Inequalities in Circular Arithmetic: A Survey

  • Ljiljana D. Petković
  • Miodrag S. Petković
Part of the Mathematics and Its Applications book series (MAIA, volume 430)


Many relations and properties in circular complex arithmetic involving estimates of various kind and inclusions reduce to analytical inequalities. In this paper we give a collection of inequalities in the complex realm which are connected to the priority of circular arithmetic operations, diametrical outer approximations by disks and circular complex functions.

Key words and phrases

Circular arithmetic Inequalities in the complex domain Inclusive approximations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Alefeld and J. Herzberger, Introduction to Interval Computation, Academic Press, New York, 1983.Google Scholar
  2. 2.
    P. G. Bao and J. Rokne Inclusion isotonity of circular complex centered forms, BIT 27 (1987), 502–509.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    W. Blaschke, Kreis und Kugel, 2. Auflage, De Gruyter, Berlin, 1956.zbMATHGoogle Scholar
  4. 4.
    N. C. Börsken Komplexe Kreis-Standardfunktionen, Freiburger Intervall-Berichte 2 (1978), 1–102.Google Scholar
  5. 5.
    I. Gargantini Parallel Laguerre iterations: Complex case, Numer. Math. 26 (1976), 317–323.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    I. Gargantini The numerical stability of simultaneous iteration via square-rooting, Comput. Math. Appl. 5 (1979), 25–31.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    I. Gargantini and P. Henrici Circular arithmetic and the determination of polynomial zeros, Numer. Math. 18 (1972), 305–320.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    T. L. McCoy and A. B. J. Kuijlaars, Answer to a query concerning the mapping w = z 1/m, Indag. Math. 4 (1972), 479–481.MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. E. Moore, Interval Analysis, Prentice-Hall, New Jersey, 1966.zbMATHGoogle Scholar
  10. 10.
    Lj. D. Petkovič, On some approximations by disks, Doctoral dissertation, University of Kragujevac, 1984. (Serbian)Google Scholar
  11. 11.
    Lj. D. Petkovič A note on the evaluation in circular arithmetic, Z. Angew. Math. Mech. 66 (1986), 371–373.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lj. D. Petkovič Query 359, Notices AMS 33 (1986), p. 629.Google Scholar
  13. 13.
    ——, The analysis of the numerical stability of iterative methods using interval arithmetic, Computer Arithmetic and Enclosure Methods (L. Atanassova, J. Herzberger, eds.), North Holland, 1992, pp. 309-317.Google Scholar
  14. 14.
    Lj. D. Petkovič On optimal including circular approximation for range of a complex exponential function, Z. Angew. Math. Mech. 72 (1993), 109–116.CrossRefGoogle Scholar
  15. 15.
    Lj. D. Petkovič and M. S. Petkovič The representation of complex circular functions using Taylor series, Z. Angew. Math. Mech. 61 (1981), 661–662.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Lj. D. Petkovič and M. S. Petkovič On the k-th root in circular arithmetic, Computing 33 (1984), 27–35.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Lj. D. Petkovič and M. S. Petkovič On some applications of circular complex functions, Computing 41 (1989), 141–148.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Lj. D. Petkovič and M. Trajković On some optimal inclusion approximations by disks, Interval Computation 1 (1993), 34–50.Google Scholar
  19. 19.
    Lj. D. Petkovič and M. S. Petkovič Verification methods for inclusion disks, Reliable Computing 1 (1995), 403–410.zbMATHCrossRefGoogle Scholar
  20. 20.
    M. S. Petkovič On the Halley-like algorithms for the simultaneous approximation of polynomial complex zeros, SIAM J. Numer. Anal. 26 (1989), 740–763.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Lj. D. Petkovič and M. S. Petkovič, Iterative Methods for Simultaneous Inclusion of Polynomial Zeros, Springer Verlag, Berlin, 1989.zbMATHGoogle Scholar
  22. 22.
    M. S. Petkovič and L. V. Stefanovic The numerical stability of the generalized root iterations for polynomial zeros, Comput. Appl. Math. 10 (1984), 97–106.zbMATHCrossRefGoogle Scholar
  23. 23.
    H. Ratschek and J. Rokne, Computer Methods for the Range of Functions, Ellis Horwood, Chichester, 1984.zbMATHGoogle Scholar
  24. 24.
    J. Rokne and T. Wu The circular complex centered form, Computing 28 (1982), 17–30.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    J. Rokne and T. Wu The circular complex centered form, Computing 30 (1983), 201–211.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    M. Trajković, Inequalities in interval analysis, Diploma Work, Faculty of Electronic Engineering, Niš, 1993. (Serbian)Google Scholar
  27. 27.
    M. Trajković, Lj. D. Petkovič and M. S. Petkovié, Diametrical inclusion disk for Z n Z. Angew. Math. Mech. 75 (1995), 775–782.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    X. Wang and S. Zheng, A family of parallel and interval iterations for finding all roots of a polynomial simultaneously with rapid convergence (I), J. Comput. Math. 1 (1984), 70–76.MathSciNetGoogle Scholar
  29. 29.
    T. Wu, The circular complex centered form, Master thesis, Department of Computer Science, Calgary, 1981.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Ljiljana D. Petković
    • 1
  • Miodrag S. Petković
    • 2
  1. 1.Faculty of Mechanical EngineeringNišYugoslavia
  2. 2.Faculty of Electronic EngineeringNišYugoslavia

Personalised recommendations