Advertisement

Convexity Properties of Special Functions and Their Zeros

  • Martin E. Muldoon
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 430)

Abstract

Convexity properties axe often useful in characterising and finding bounds for special function and their zeros, as well as in questions concerning the existence and uniqueness of zeros in certain intervals. In this survey paper, we describe some work related to the gamma function, the q-gamma function, Bessel and cylinder functions and the Hermite function.

Key words and phrases

Convexity Gamma function Bessel functions Cylinder functions Zeros Inequalities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, Washington, 1964.zbMATHGoogle Scholar
  2. 2.
    S. Ahmed, A. Laforgia and M. E. Muldoon On the spacing of the zeros of some classical orthogonal polynomials, J. London Math. Soc. 25 (1982), 246–252.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    E. Artin, The Gamma Function, Holt, Rinehart and Winston, New York, 1964 [German original, B.G. Teubner, Leipzig, 1931].zbMATHGoogle Scholar
  4. 4.
    R. Askey, The q-gamma and q-beta functions, Appl. Anal. 8 (1978/79), 125–141.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    H. Bohr and J. Mollerup, Laerebog i Matematisk Analyse, Jul. Gjellerups Forlag, Copenhagen, 1922.Google Scholar
  6. 6.
    Ph. J. Davis Leonhard Euler’s integral: a historical profile of the gamma function, Amer. Math. Monthly 66 (1959), 849–869.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Z. Došlá, Higher monotonicity properties of special functions: application on Bessel case ∣ν∣ < ½, CMUC 31 (1990), 233–241.zbMATHGoogle Scholar
  8. 8.
    L. Durand, Nicholson-type integrals for products of Gegenbauer functions and related topics, Theory and Applications of Special Functions (R. Askey, ed.), Academic Press, New York and London, 1975, pp. 353–374.Google Scholar
  9. 9.
    Á. Elbert Concavity of the zeros of Bessel functions, Studia Sci. Math. Hungar. 12 (1977), 81–88.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Á. Elbert, L. Gatteschi and A. Laforgia On the concavity of zeros of Bessel functions, Appl. Anal. 16 (1983), 261–278.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    A. Elbert and A. Laforgia, On the zeros of derivatives of Bessel functions, Z. Angew. Math. Phys. 34 (1983).Google Scholar
  12. 12.
    A. Elbert and A. Laforgia On the square of the zeros of Bessel functions, SIAM J. Math. Anal. 15 (1984), 206–212.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    A. Elbert and A. Laforgia On the convexity of the zeros of Bessel functions, SIAM J. Math. Anal. 16 (1985), 614–619.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    A. Elbert and A. Laforgia Monotonicity properties of the zeros of Bessel functions, SIAM J. Math. Anal. 17 (1986), 1483–1488.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    A. Elbert and A. Laforgia Further results on the zeros of Bessel functions, Analysis 5 (1986), 71–86.MathSciNetGoogle Scholar
  16. 16.
    A. Elbert and A. Laforgia Some consequences of a lower bound for the second derivative of the zeros of Bessel functions, J. Math. Anal. Appl. 125(1) (1987), 1–5.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Á. Elbert and M. E. Muldoon, Inequalities and monotonicity properties for zeros of Hermite functions (to appear).Google Scholar
  18. 18.
    A. Erdélyi, et al., Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, 1953.Google Scholar
  19. 19.
    A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1954.Google Scholar
  20. 20.
    G. Gasper and M. Rahman, Basic Hypergeometric Series, University Press, Cambridge, 1990.zbMATHGoogle Scholar
  21. 21.
    C. Giordano and A. Laforgia Elementary approximations for zeros of Bessel functions, J. Comput. Appl. Math. 9 (1983), 221–228.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    L. N.-A. Gori, A. Laforgia and M. E. Muldoon Higher monotonicity properties and inequalities for zeros of Bessel functions, Proc. Amer. Math. Soc. 112 (1991), 513–520.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    P. Hartman On differential equations and the function J 2 λ + Y 2 λ, Amer. J. Math. 83 (1961), 154–188.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    W. K. Hayman and E. L. Ortiz, An upper bound for the largest zero of Hermite’s function with applications to subharmonic functions, Proc. Roy. Soc. Edinburgh 75A (1975-76), 183–197.MathSciNetGoogle Scholar
  25. 25.
    M. E. H. Ismail and M. E. Muldoon Monotonicity of the zeros of a cross-product of Bessel functions, SIAM J. Math. Anal. 9 (1978), 759–767.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    M. E. H. Ismail and M. E. Muldoon On the variation with respect to a parameter of zeros of Bessel and q-Bessel functions, J. Math. Anal. Appl. 135 (1988), 187–207.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    M. E. H. Ismail and M. E. Muldoon, Inequalities for gamma and q-gamma functions, Approximation and Computation: A Festschrift in Honor of Walter Gautschi (R. V. M. Zahar, ed.), ISNM 119, Birkhäuser Verlag, Boston — Basel — Berlin, 1994, pp. 309–323.CrossRefGoogle Scholar
  28. 28.
    F. John Special solutions of certain difference equations, Acta Math. 71 (1939), 175–189.MathSciNetCrossRefGoogle Scholar
  29. 29.
    H.-H. Kairies, Convexity in the theory of the gamma function, General Inequalities (Proc. First Internat. Conf., Oberwolfach, 1976, I), Birkhäuser Verlag, Basel, 1978, pp. 49–62.Google Scholar
  30. 30.
    H.-H. Kairies and M. E. Muldoon Some characterizations of q-factorial functions, Aequationes Math. 25 (1982), 67–76.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    M. K. Kerimov and S. L. Skorokhodov, Evaluation of complex zeros of Bessel functions Jv(z) and Iv(z) and their derivatives, U.S.S.R. Comput. Math, and Math. Phys. 24 (1984), 131–141 [Russian original, Ž. Vyčisl. Mat. i Mat. Fiz. 24 (1984), 1497-1513].zbMATHCrossRefGoogle Scholar
  32. 32.
    C. G. Kokologiannaki, M. E. Muldoon and P. D. Siafarikas A unimodal property of purely imaginary zeros of Bessel and related functions, Canad. Math. Bull. 37 (1994), 365–373.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    W. Krull, Bemerkungen zur Differenzengleichung g(x + 1) — g(x) = φ(x), Math. Nachr. 1 (1948), 365–376.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    M. Kuczma, Functional Equations in a Single Variable, Polish Scientific Publishers, Warsaw, 1968.zbMATHGoogle Scholar
  35. 35.
    A. Laforgia, Sturm theory for certain classes of Sturm-Liouville equations and Turanians and Wronskians for the zeros of derivative of Bessel functions, Proc. Koninklijke Nederlandse Akad. Wetenschappen, ser. A 85 [ = Indag. Math. 44] (1982), 295-301.Google Scholar
  36. 36.
    A. Laforgia, Monotonicity properties for the zeros of orthogonal polynomials and Bessel functions, Polynômes Orthogonaux et Applications (Proceedings, Bar-le-Duc, 1984) (C. Brezin-ski, et al., eds.), Lect. Notes Math. Vol. 1171, 1985, pp. 267–277.Google Scholar
  37. 37.
    A. Laforgia and M. E. Muldoon Monotonicity and concavity properties of zeros of Bessel functions, J. Math. Anal. Appl. 98 (1984), 470–477.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    A. Laforgia and M. E. Muldoon Monotonicity of zeros of generalized Airy functions, Z. Angew. Math. Phys. 39 (1988), 267–271.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    J. T. Lewis and M. E. Muldoon Monotonicity and convexity properties of zeros of Bessel functions, SIAM J. Math. Anal. 8 (1977), 171–178.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    L. Lorch Turanians and Wronskians for the zeros of Bessel functions, SIAM J. Math. Anal. 11 (1980), 223–227.MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    L. Lorch and M. E. Muldoon An inequality for concave functions with applications to Bessel and trigonometric functions, Facta Univ. Ser. Math. Inform. 2 (1987), 29–34.MathSciNetzbMATHGoogle Scholar
  42. 42.
    L. Lorch and P. Szego Higher monotonicity properties of certain Sturm-Liouville functions, Acta Math. 109 (1963), 55–73.MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    L. Lorch and P. Szego Higher monotonicity properties of certain Sturm-Liouville functions II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), 455–457.MathSciNetzbMATHGoogle Scholar
  44. 44.
    L. Lorch and P. Szego Monotonicity of the differences of zeros of Bessel functions as a function of order, Proc. Amer. Math. Soc. 15 (1964), 91–96.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    L. Lorch, M. E. Muldoon and P. Szego Some monotonicity properties of Bessel functions, SIAM J. Math. Anal. 4 (1973), 385–392.MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    L. Lorch, M. E. Muldoon and P. Szego Inflection points of Bessel functions of negative order, Canad. J. Math. 43 (1991), 1309–1322.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    A. Mahajan A Bessel function inequality, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 634-No. 677 (1979), 70–71.MathSciNetGoogle Scholar
  48. 48.
    E. Makai On a monotonie property of certain Sturm-Liouville functions, Acta Math. Acad. Sci. Hungar. 3 (1952), 165–172.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    D. S. Mitrinović, Analytic Inequalities, Springer Verlag, New York — Heidelberg — Berlin, 1970.zbMATHGoogle Scholar
  50. 50.
    D. S. Moak The q-gamma function for q < 1, Aequationes Math. 20 (1980), 278–285.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    M. E. Muldoon, Higher monotonicity properties of certain Sturm-Liouville functions. V, Proc. Roy. Soc. Edinburgh Sec A 77A (1977), 23–37.MathSciNetGoogle Scholar
  52. 52.
    M. E. Muldoon, Some monotonicity properties and characterizations of the gamma function, Aequationes Math. 18 (1978), 54–63.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    M. E. Muldoon, A differential equations proof of a Nicholson-type formula, Z. Angew. Math. Mech. 61 (1981), 598–599.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    M. E. Muldoon, On the zeros of a function related to Bessel functions, Arch. Math. (Brno) 18 (1982), 23–34.MathSciNetzbMATHGoogle Scholar
  55. 55.
    M. E. Muldoon, Electrostatics and zeros of Bessel functions, J. Comput. Appl. Math. 65 (1995), 299–308.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    I. Naseli Rational bounds for ratios of modified Bessel functions, SIAM J. Math. Anal. 9 (1978), 1–11.MathSciNetCrossRefGoogle Scholar
  57. 57.
    Ch. Sturm Sur les équations différentielles linéaires du second ordre, J. Math. Pures Appl. 1 (1836), 106–186.Google Scholar
  58. 58.
    G. Szegö, Orthogonal Polynomials, 4th edition, Amer. Math. Soc, Providence, R.I., 1975.Google Scholar
  59. 59.
    J. Vosmanský, The monotonicity of extremants of integrals of the differential equation y″ + q(i)y = 0, Arch. Math. (Brno) 2 (1966), 105–111.MathSciNetzbMATHGoogle Scholar
  60. 60.
    G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 2nd ed., 1944.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Martin E. Muldoon
    • 1
  1. 1.Department of Mathematics & StatisticsYork UniversityNorth YorkCanada

Personalised recommendations