Discrete Inequalities of Wirtinger’s Type

  • Gradimir V. Milovanović
  • Igor Ž. Milovanović
Part of the Mathematics and Its Applications book series (MAIA, volume 430)


Various discrete versions of Wirtinger’s type inequalities are considered. A short account on the first results in this field given by Fan, Taussky and Todd [10] as well as some generalisations of these discrete inequalities are done. Also, a general method for finding the best possible constants A n and B n in inequalities of the form
$$A_{n}\sum_{k=1}^{n}p_kx_{k}^{2}\leq\sum_{k=0}^{n}r_{k}(x_{k}-x_{k+1})^{2}\leq B_{n}\sum_{k=1}^{n}p_kx_{k}^{2}$$
where p = (p k ) and r = (r k ) are given weight sequences and x = (x k ) is an arbitrary sequence of the real numbers, is presented. Two types of problems are investigated and several corollaries of the basic results are obtained. Further generalisations of discrete inequalities of Wirtinger’s type for higher differences are also treated.

Key words and phrases

Discrete inequalities Difference Eigenvalues and eigenvectors Best constants Orthogonal polynomials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Agarwal, Difference Equations and Inequalities — Theory, Methods, and Applications, Marcel Dekker, New York — Basel — Hong Kong, 1992.zbMATHGoogle Scholar
  2. 2.
    H. Alzer Converses of two inequalities by Ky Fan, O. Taussky, and J. Todd, J. Math. Anal. Appl. 161 (1991), 142–147.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    H. Alzer Note on a discrete Opial-type inequality, Arch. Math. 65 (1995), 267–270.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    E. F. Beckenbach and R. Bellman, Inequalities, Springer Verlag, Berlin — Heidelberg — New York, 1971.zbMATHGoogle Scholar
  5. 5.
    W. Blaschke, Kreis und Kugel, Veit u. Co., Leipzig, 1916.zbMATHGoogle Scholar
  6. 6.
    H. D. Block, Discrete analogues of certain integral inequalities, Proc. Amer. Math. Soc. 8 (1957), 852–859.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    W. Chen On a question of H. Alzer, Arch. Math. 62 (1994), 315–320.zbMATHCrossRefGoogle Scholar
  8. 8.
    S.-S. Cheng Discrete quadratic Wirtinger’s inequalities, Linear Algebra Appl. 85 (1987), 57–73.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    E. Egerváry and O. Szász Einige Extremalprobleme im Bereiche der trigonometrischen Polynome, Math. Z. 27 (1928), 641–692.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    K. Fan, O. Taussky and J. Todd Discrete analogs of inequalities of Wirtinger, Monatsh. Math. 59 (1955), 73–90.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    L. Fejér Über trigonometrische Polynome, J. Reine Angew. Math. 146 (1915), 53–82.zbMATHGoogle Scholar
  12. 12.
    A. M. Fink Discrete inequalities of generalized Wirtinger type, Aequationes Math. 11 (1974), 31–39.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd Edition, Univ. Press, Cambridge, 1952.zbMATHGoogle Scholar
  14. 14.
    C.-M. Lee On a discrete analogue of inequalities of Opial and Yang, Canad. Math. Bull. 11 (1968), 73–77.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    L. Losonczi, On some discrete quadratic inequalities, General Inequalities 5 (Oberwolfach, 1986) (W. Walter, ed.), ISNM Vol. 80, Birkhäuser Verlag, Basel, 1987, pp. 73–85.CrossRefGoogle Scholar
  16. 16.
    G. Lunter New proofs and a generalisation of inequalities of Fan, Taussky, and Todd, J. Math. Anal. Appl. 185 (1994), 464–476.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    G. V. Milovanović, Numerical Analysis, Part I, 3rd Edition, Naučna Knjiga, Belgrade, 1991. (Serbian)Google Scholar
  18. 18.
    G. V. Milovanović, Numerical Analysis, Part II, 3rd Edition, Naučna Knjiga, Belgrade, 1981. (Serbian)Google Scholar
  19. 19.
    G. V. Milovanović and I. Ž. Milovanović On discrete inequalities of Wirtinger’s type, J. Math. Anal. Appl. 88 (1982), 378–387.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    G. V. Milovanović and I. Ž. Milovanović Some discrete inequalities of OpiaVs type, Acta Sci. Math. (Szeged) 47 (1984), 413–417.MathSciNetzbMATHGoogle Scholar
  21. 21.
    ——, Discrete inequalities of Wirtinger’s type for higher differences, J. Ineq. Appl. 1 (1997) (to appear).Google Scholar
  22. 22.
    G. V. Milovanovič, I. Ž. Milovanović and L. Z. Marinkovic, Extremal problems for polynomials and their coefficients, Topics in Polynomials of One and Several Variables and Their Applications (Th. M. Rassias, H. M. Srivastava and A. Yanushauskas, eds.), World Scientific, Singapore — New Jersey — London — Hong Kong, 1993, pp. 435–455.Google Scholar
  23. 23.
    G. V. Milovanovič, D. S. Mitrinović and Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore — New Jersey — London — Hong Kong, 1994.zbMATHGoogle Scholar
  24. 24.
    D. S. Mitrinović and P. M. Vasić An inequality ascribed to Wirtinger and its variations and generalization, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No 247 — No 273 (1969), 157–170.Google Scholar
  25. 25.
    D. S. Mitrinović (with P. M. Vasić), Analytic Inequalities, Springer Verlag, Berlin — Heidelberg — New York, 1970.zbMATHGoogle Scholar
  26. 26.
    D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer, Dordrecht — Boston — London, 1991.zbMATHCrossRefGoogle Scholar
  27. 27.
    J. Novotná Variations of discrete analogues of Wirtinger’s inequality, Časopis Pest. Mat. 105 (1980), 278–285.zbMATHGoogle Scholar
  28. 28.
    J. Novotná Discrete analogues of Wirtinger’s inequality for a two-dimensional array, Časopis Pest. Mat. 105 (1980), 354–362.zbMATHGoogle Scholar
  29. 29.
    J. Novotná A sharpening of discrete analogues of Wirtinger’s inequality, časopis Pest. Mat. 108 (1983), 70–77.zbMATHGoogle Scholar
  30. 30.
    A. M. Pfeffer, On certain discrete inequalities and their continuous analogs, J. Res. Nat. Bur. Standards Sect. B 70B (1966), 221–231.MathSciNetCrossRefGoogle Scholar
  31. 31.
    I. J. Schoenberg The finite Fourier series and elementary geometry, Amer. Math. Monthly 57 (1950), 390–404.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    O. Shisha On the discrete version of Wirtinger’s inequality, Amer. Math. Monthly 80 (1973), 755–760.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    G. Szegö, Koeffizientenabschätzungen bei ebenen und räumlichen harmonischen Entwicklungen, Math. Ann. 96 (1926/27), 601–632.CrossRefGoogle Scholar
  34. 34.
    J. S. W. Wong A discrete analogue of Opial’s inequality, Canad. Math. Bull. 10 (1967), 115–118.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    G.-S. Yang and C.-D. You A note on discrete Opial’s inequality, Tamking J. Math. 23 (1992), 67–78.MathSciNetzbMATHGoogle Scholar
  36. 36.
    X.-R. Yin A converse inequality of Fan, Taussky, and Todd, J. Math. Anal. Appl. 182 (1994), 654–657.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Gradimir V. Milovanović
    • 1
  • Igor Ž. Milovanović
    • 1
  1. 1.Department of MathematicsFaculty of Electronic EngineeringNišYugoslavia

Personalised recommendations