Skip to main content

Chlorinated aromatic compounds

  • Chapter

Part of the book series: Environment & Chemistry ((ENVC,volume 2))

Abstract

Chloroanilines are aniline derivatives with one up to five chlorine atoms substituted on the aromatic ring, yielding 19 compounds, including three mono- and tetrachloroanilines, six di- and trichloroanilines, and the fully chlorinated pentachloroaniline.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowicz, D.A. 1990. Aerobic and anaerobic biodegradation of PCBs: A review. Critical Rev. in Biotechnol. 10:241–251.

    Article  CAS  Google Scholar 

  • Abramowicz, D. A., M.J. Brennan, H.M. van Dort, and E. L. Gallagher. 1993. Factors influencing the rate of polychlorinated biphenyl dechlorination in Hudson River sediments. Environ. Sci. Technol. 27:1125–1131.

    Article  CAS  Google Scholar 

  • Abril, M.-A., C. Michan, K.N. Timmis, and J.L. Ramos. 1989. Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J. Bacteriol. 171:6782–6790.

    CAS  Google Scholar 

  • Adriaens, P. , H.P. Kohler, D. Kohler-Staub, and D.D. Focht. 1989. Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4’ -dichlorobiphenyl . Appl . Environ. Microbiol. 55 : 887–892 .

    CAS  Google Scholar 

  • Adriaens, P. , and D.D. Focht. 1990. Continuous coculture degradation of selected polychlorinated biphenyl congeners by Acinetobacter spp. in an aerobic reactor system. Environ. Sci. Technol. 24 :1042–1049 .

    Article  CAS  Google Scholar 

  • Adriaens, P. 1994. Evidence for chlorine migration during oxidation of 2-chlorobiphenyl by a type II methanotroph. Appl. Environ. Microbiol. 60:1658–1662.

    CAS  Google Scholar 

  • Adriaens, P., and D. Grbić-Galić. 1994. Reductive dechlorination of PCDD/F by anaerobic cultures and sediments. Chemosphere 29:2253–2259.

    Article  CAS  Google Scholar 

  • Adriaens, P., Q. Fu, and D. Grbić-Galić. 1995. Bioavailability and transformation of highly chlorinated dibenzo-p-dioxins and dibenzofurans in anaerobic soils and sediments. Environ. Sci. Technol. 29 : 2252–2260.

    Article  CAS  Google Scholar 

  • Ahmed, M. , and D.D. Focht. 1973. Degradation of polychlorinated biphenyls by two species of Achromobacter. Can. J. Microbiol. 19:47–52.

    Article  CAS  Google Scholar 

  • Alder, A.C., M.M. Häggblom, S.R. Oppenheimer, and L.Y. Young. 1993. Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environ. Sci. Technol. 27:530–538.

    Article  CAS  Google Scholar 

  • Alleman, B. C., B. E. Logan, and R.L. Gilbertson. 1995. Degradation of pentachlorophenol by fixed films of white rot fungi in rotating tube bioreactors. Water Res. 7:1533–1538.

    Google Scholar 

  • Amy, P.S., J.W. Schulke, L.M. Frazier, and R.J. Seidler. 1985. Characterization of aquatic bacteria and cloning of genes specifying partial degradation of 2,4-dichlorophenoxyacetic acid. Appl. Environ. Microbiol. 49:1237–1245.

    CAS  Google Scholar 

  • Anid, P.J., B.P. Ravest-Webster, and T.M. Vogel. 1993. Effect of hydrogen peroxide on the biodegradation of PCBs in anaerobically dechlorinated river sediments. Biodegradation 4:241–248.

    Article  CAS  Google Scholar 

  • Apajalahti, J. H. A., and M. S. Salonen. 1984. Absorption of pentachlorophenol (PCP) by bark chips and its role in microbial PCP degradation. Microb. Ecol. 10:359–367.

    Article  CAS  Google Scholar 

  • Apajalahti, J.H.A., and M.S. Salkinoja-Salonen. 1986. Degradation of polychlorinated phenols by Rhodococcus chlorophenolicus. Appl. Microbiol. Biotechnol. 25:62–67.

    Article  CAS  Google Scholar 

  • Apajalahti, J.H.A., and M.S. Salkinoja-Salonen. 1987a. Dechlorination and arahydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J. Bacteriol. 169:675–681.

    CAS  Google Scholar 

  • Apajalahti, J. H. A., and M. S. Salkinoj a-Salonen. 1987b. Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J. Bacteriol . 169 : 5125–5130.

    CAS  Google Scholar 

  • Arensdorf, J. J., and D.D. Focht. 1994. Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls. Appl. Environ. Microbiol. 60:2884–2889.

    CAS  Google Scholar 

  • Arensdorf, J. J., and D.D. Focht. 1995. A meta-cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166. Appl. Environ. Microbiol. 61:443–447.

    CAS  Google Scholar 

  • Armjand, M., and H. Sandermann Jr. 1986. Plant biochemistry of xenobiotics. Mineralization of chloroaniline/lignin metabolites from wheat by a white-rot fungus, Phanerochaete chrysosporium. Z. Naturforsch. 41:206–214.

    Google Scholar 

  • Baker, M.D., and C.I. Mayfield. 1980. Microbial and non-biological decomposition of chlorophenols and phenol in soil. Water, Air and Soil Pollution 13:411–424.

    Article  CAS  Google Scholar 

  • Balfanz, J., and H.-J. Rehm. 1991. Biodegradation of 4-chlorophenol by adsorptive immobilized Alcaligenes sp. A 7–2 in soil. Appl. Microbiol. Biotechnol. 35:662–668.

    Article  CAS  Google Scholar 

  • Ballschmiter, K., and C. Scholz. 1981. Primärschritte der Umwandlung von ChlorobenzolDerivaten durch Pseudomonas putida. Angew. Chem. 93:1026–1027.

    Article  CAS  Google Scholar 

  • Bartels, I., H.-J. Knackmuss, and W. Reineke. 1984. Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl. Environ. Microbiol. 47:500–505.

    CAS  Google Scholar 

  • Baumgarten, J. , T. Mann, and F. Schmidt. 1984. Microorganism cultures decomposing polysubstituted aromatic hydrocarbons and their use in biological sewage plants. Ger. Offen. DE 3225885 Al, 12 j an 1984, 27 pp . (patent) .

    Google Scholar 

  • Bedard, D.L., R. Unterman, L.H. Bopp, M.J. Brennan, M.L. Haberl, and C. Johnson. 1986. Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51:761–768.

    CAS  Google Scholar 

  • Bedard, D.L., R.E. Wagner, M.J. Brennan, M.L. Haberl, and J.F. Brown Jr. 1987a. Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53 :1094–1102.

    CAS  Google Scholar 

  • Bedard, D.L., M.L. Haberl, R.J. May, and M.J. Brennan. 1987b. Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus 1H850 Appl. Environ. Microbiol. 53:1103–1112.

    CAS  Google Scholar 

  • Bedard, D. L. , and M. L. Haberl. 1990. Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains. Microb. Ecol. 20:87–102.

    Article  CAS  Google Scholar 

  • Beltrame, P., P.L. Beltrame, P. Carniti, and D. Pitea. 1982. Kinetics of biodegradation of mixtures containing 2,4-dichlorophenol in a continuous stirred reactor. Water Res. 16 : 429–433 .

    Article  CAS  Google Scholar 

  • Bender, J., P. Phillips, R. Lee, S. Rodríguez-Eaton, G. Saha, B. Loganathan, and L. Sonnenberg. 1995. Degradation of chlorinated organic compounds by microbial mats. In: Biological unit processes for hazardous waste treatment (Edited by R.E. Hinchee, G.D. Sayles, and R.S. Skeen). Book 3(9) of the third international in situ and on-site bioreclamation symposium (San Diego, USA). Battelle Press, Columbus, USA.

    Google Scholar 

  • Berkaw, M., K. R. Sowers, and H.D. May. 1996. Anaerobic ortho dechlorination of polychlorinated biphenyls by estuarine sediments from Baltimore Harbor. Appl. Environ. Microbiol. 62: 2534–2539 .

    CAS  Google Scholar 

  • Bestetti, G., E. Galli, B. Leoni, F. Pelizzoni, and G. Sello. 1992. Regioselective hydroxylation of chlorobenzene and chlorophenols by a Pseudomonas putida. Appl. Microbiol. Biotechnol. 37:260–263.

    Article  CAS  Google Scholar 

  • Beurskens, J.E.M., C.G.C. Dekker, J. Jonkhoff, and L. Pompstra. 1993. Microbial dechlorination of hexachlorobenzene in a sedimentation area of the Rhine river. Biogeochemistry 19:61–81.

    Article  Google Scholar 

  • Beurskens, J.E.M., C.G.C. Dekker, H. van den Heuvel, M. Swart, and J. de Wolf. 1994. Dechlorination of chlorinated benzenes by an anaerobic microbial consortium that selective mediates the thermodynamic most favorable reactions. Environ. Sci. Technol. 28:701–706.

    Article  CAS  Google Scholar 

  • Beurskens, J.E.M., J. de Wolf, and J. Dolfing. 1995. Reductive dechlorination of hexachlorobenzene by microorganisms from polluted estuarine sediment. Ph.D. Thesis, Agricultural University of Wageningen, The Netherlands.

    Google Scholar 

  • Beurskens, J.E.M., M. Toussaint, J. de Wolf, J.M.D. van der Steen, P.C. Slot, L.C.M. Commandeur, and J.R. Parsons. 1995a. Dehalogenation of chlorinated dioxins by an anaerobic microbial consortium from sediment. Environ. Toxicol. Chem. 14:939–943.

    Article  CAS  Google Scholar 

  • Beurskens, J.E.M. 1995. Microbial transformation of chlorinated aromatics in sediments. Ph. D. Thesis, Agricultural University of Wageningen, The Netherlands.

    Google Scholar 

  • Bhat, M.A., and C.S. Vaidyanathan. 1995. Microbial degradation of halogenated aromatics. In: Biotransformations: microbial degradation of health-risk compounds (Edited by V.P. Singh). Progress in industrial microbiology, Vol 32. Elsevier Science, The Netherlands.

    Google Scholar 

  • Bollag, J.-M, and J. Dec. 1995. Detoxification of aromatic pollutants by fungal enzymes. In: Microbial processes for bioremediation (Edited by R.E. Hinchee, C.M. Vogel, and F.J. Brockman). Book 3(8) of the third international in situ and on-site bioreclamation symposium (San Diego, USA). Battelle Press, Columbus, USA.

    Google Scholar 

  • Bont, J.A.M. de, M.J.A.W. Vorage, S. Hartmans, and W.J.J. van den Tweel. 1986. Microbial degradation of 1.3-dichlorobenzene. Appl. Environ. Microbiol. 52:677–680.

    Google Scholar 

  • Bopp, L.H. 1986. Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J. Ind. Microbiol. 1:23–29.

    Article  CAS  Google Scholar 

  • Bosma, T.N.P., S.R. van der Meer, G. Schraa, M.E. Tros, and A.J.B. Zehnder. 1988. Reductive dechlorination of all trichloro- and dichlorobenzene isomers. FEMS Microbial. Ecol. 53:223–229.

    Article  CAS  Google Scholar 

  • Bouwer, E.J., and P.L. McCarty. 1982. Removal of trace chlorinated organic compounds by activated carbon and fixed-film bacteria. Environ. Sci. Technol. 16:836–843.

    Article  CAS  Google Scholar 

  • Bouwer, E. J. , and P. L. McCarty. 1985. Utilization rates of trace halogenated organic compounds in acetate-grown biofilms. Biotechnol. Bioeng. 27:1564–1571.

    Article  CAS  Google Scholar 

  • Bouwer, E.J. 1985. Secondary utilization of trace halogenated organic compounds in biofilms. Environ. Progr. 4:43–46.

    Article  CAS  Google Scholar 

  • Boyd, S.A., and D.R. Shelton. 1984. Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl. Environ. Microbiol. 47:272–277.

    CAS  Google Scholar 

  • Boyle, A.W., C.J. Silvin, J.P. Hasset, J.P. Nakas, and S.W. Tanenbaum. 1992. Bacterial PCB biodegradation. Biodegradation 3:285–298.

    Article  CAS  Google Scholar 

  • Boyle, A. W., C.K. Blake, W. A. Price II, and H.D. May. 1993. Effects of polychlorinated biphenyl congener concentration and sediment supplementation on rates of methanogenesis and 2,3,6-trichlorobiphenyl dechlorination in an anaerobic enrichment. Appl. Environ. Microbiol. 59 : 3027–3031.

    CAS  Google Scholar 

  • Brenner, V., J.J. Arensdorf, and D.D. Focht. Genetic construction of PCB degraders. Biodegradation 5:359–377.

    Google Scholar 

  • Briglia, M., E.-L. Nurmiaho-Lassila, G. Vallini, and M. Salkinoja-Salonen. 1990. The survival of the pentachlorophenol-degrading Rhodococcus chlorophenolicus PCP-1 and Flavobacterium sp. in natural soil. Biodegradation 1:273–281.

    Article  Google Scholar 

  • Brinkmann, U., and W. Reineke. 1992. Degradation of chlorotoluenes by in vivo constructed hybrid strains: problems of enzyme specificity, induction and prevention of mew pathway. FEMS Microbiol. Lett. 96:81–88.

    Article  CAS  Google Scholar 

  • Brookes, P.R., and A.G. Livingston. 1993. Point source detoxification of an industrially produced 3,4-dichloroaniline-manufacture waste water using a membrane bioreactor. Appl. Microbiol. Biotechnol. 39 : 764–771.

    Article  CAS  Google Scholar 

  • Brookes, P.R., and A.G. Livingston. 1994. Biological detoxification of a 3-chloronitrobenzene manufacture waste water in an extractive membrane bioreactor. Water Res. 28:1347–1354.

    Article  CAS  Google Scholar 

  • Brown, D., and P. Laboureur. 1983. The aerobic biodegradability of primary aromatic amines. Chemosphere 12:405–414.

    Article  CAS  Google Scholar 

  • Brown, E.J., J.J. Pignatello, M.M. Martinson, and R.L. Crawford. 1986. Pentachlorophenol degradation: a pure bacterial culture and an epilithic microbial consortium. Appl. Environ. Microbiol. 52:92–97.

    CAS  Google Scholar 

  • Brown, J.F., D.L. Bedard, M.J. Brennan, J.C. Carnahan, H. Feng, and R.E. Wagner. 1987. Polychlorinated biphenyl dechlorination in aquatic sediments. Science 236:709–712.

    Article  CAS  Google Scholar 

  • Brunner, W., F. H. Sutherland, and D.D. Focht. 1985. Enhanced biodegradation of polychlorinated biphenyls in soil by analog enrichment and bacterial inoculation. J. Environ. Qual. 14:324–328.

    Article  CAS  Google Scholar 

  • Brunsbach, F. R. , and W. Reineke. 1993. Degradation of chloroanilines in soil slurry by specialized organisms. Appl. Microbiol. Biotechnol. 40:402–407.

    Article  CAS  Google Scholar 

  • Brunsbach, F. R. , and W. Reineke. 1994. Degradation of chlorobenzenes in soil slurry by a specialized organism. Appl. Microbiol. Biotechnol. 42:415–420.

    Article  CAS  Google Scholar 

  • Bryant, F.O., D.D. Hale, and J.E. Rogers. 1991. Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries. Appl. Environ. Microbiol. 57:2293–2301.

    CAS  Google Scholar 

  • Bumpus, J.A., M. Tien, D. Wright, and S.D. Aust. 1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436.

    Article  CAS  Google Scholar 

  • Buser, H.F., and M.D. Muller. 1986. Methylthio metabolites of polychlorobiphenyls identified in sediment samples from two lakes in Switzerland. Environ. Sci. Technol. 20: 730–735.

    Article  CAS  Google Scholar 

  • Caixach, J., J. Rivera, M.T. Galceran, and F.J. Santos. 1994. Homologue distributions of polychlorinated terphenyls by high-resolution gas chromatography and high-resolution mass spectrometry. J. Chromatography A 675:205–211.

    Google Scholar 

  • Callahan, M.A., M.W. Slimak, N.W. Gabel, I.P. May, C.F. Fowler, J. Randall Freed, P. Jennings, R.L. Durfee, F.C. Whitmore, B. Maestri, W.R. Mabey, B. R. Holt, and C. Gould. 1979. Water-related fate of 129 priority pollutants. EPA-44014–79-029a,b, NTIS.

    Google Scholar 

  • Chu, J.P., and E.J. Kirsch. 1972. Metabolism of pentachlorophenol by an axenic bacterial culture. Appl. Microbiol. 23:1033–1035.

    CAS  Google Scholar 

  • Chu, J.P., and E.J. Kirsch. 1973. Utilization of halophenols by a pentachlorophenol metabolizing bacterium. Dev. Ind. Microbiol. 14 : 264–273 .

    CAS  Google Scholar 

  • Clark, R. R. , E. S. K. Chian, and R. A. Griffin. 1979. Degradation of polychlorinated biphenyls by mixed microbial cultures. Appl. Environ. Microbiol. 37:680–685.

    CAS  Google Scholar 

  • Colaruotolo, J.F., R.H. Olsen, and P.A. Vandenbergh. 1983. Microbial degradation of obnoxious organic wastes into innocuous materials. Eur. Pat. Appl. EP 75885 A l, 6 apr. 1983, 32 pp.

    Google Scholar 

  • Cole, J. R. , A. L. Cascarelli, W.W. Mohn, and J.M. Tiedje. 1994. Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol. Appl. Environ. Microbiol. 60 : 3536–3542.

    CAS  Google Scholar 

  • Commandeur, L. C. M., and J. R. Parsons. 1990. Degradation of halogenated aromatic compounds. Biodegradation 1:207–220.

    Article  CAS  Google Scholar 

  • Corbett, M. D., and B. R. Corbett. 1981. Metabolism of 4- chloronitrobenzene by the yeast Rhodosporium sp. Appl. Environ. Microbiol. 41:942–949.

    CAS  Google Scholar 

  • Cozza, C. L. , and S.L. Woods. 1992. Reductive dechlorination pathways for substituted benzenes: a correlation with electronic properties. Biodegradation 2:265–278.

    Article  Google Scholar 

  • Cserjesi, A.J., and E.L. Johnson. 1972. Methylation of pentachlorophenol by Trichoderma virgatum. Can. J. Microbiol. 18:45–49.

    Article  CAS  Google Scholar 

  • Curtis, R.F., D.G. Land, N.M. Griffiths, M. Gee, D. Robinson, J.L. Peel, C. Dennis, and J.M. Gee. 1972. 2,3,4,6-Tetrachloroanisole association with musty taint in chickens and microbiological formation. Nature 235:223–224.

    Article  CAS  Google Scholar 

  • Curtis, R.F., C. Dennis, J.M. Gee, M.G. Gee, N.M. Griffiths, D.G. Land, J.L. Peel, and D. Robinson. 1974. Chloroanisoles as a cause of musty taint in chickens and their microbiological formation from chlorophenols in broiler house litters. J. Agric. Food Sci. 25:811–828.

    Article  CAS  Google Scholar 

  • Dec, J., and J.-M. Bollag. 1995a. Application of plant materials for the cleanup of waste water. In: Bioremediation of chlorinated solvents (Edited by R.E. Hinchee, A. Leeson, and L.

    Google Scholar 

  • Semprini). Book 3(4) of the third international in situ and on-site bioreclamation symposium (San Diego, USA). Battelle Press, Columbus, USA.

    Google Scholar 

  • Dec, J., and J.-M. Bollag. 1995b. Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling. Environ. Sci. Technol. 29:657–663.

    Article  CAS  Google Scholar 

  • Dietrich, G., and J. Winter. 1990. Anaerobic degradation of chlorophenol by an enrichment culture. Appl. Microbiol. Biotechnol. 34:253–258.

    Article  CAS  Google Scholar 

  • Dietrich, D., W.J. Hickey, and R. Lamar. 1995. Degradation of 4,4’-dichlorobiphenyl, 3,3’,4,4’-tetrachlorobiphenyl, and 2,2’ ,4,4’ ,5,5’-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 61:3904–3909.

    CAS  Google Scholar 

  • Dmochewitz, S., and K. Ballschmitter. 1988. Microbial transformation of technical mixtures of polychlorinated biphenyls (PCBs) by the fungus Aspergillus niger. Chemosphere 17:111–121.

    Article  CAS  Google Scholar 

  • Don, R. H., and J.M. Pemberton. 1985. Genetic and physical map of the 2, 4-dichlorophenoxyacetic acid degradative plasmid pJP4. J. Bacteriol. 161:466–468.

    CAS  Google Scholar 

  • Eaton, D. 1985. Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: a ligninolytic fungus. Enzyme Microbiol. Technol. 7:194–196.

    CAS  Google Scholar 

  • Edgehill, R. U., and R. K. Finn. 1982. Isolation, characterization and growth kinetics of bacteria metabolizing pentachlorophenol. Eur. J. Appl. Microbiol. Biotechnol. 16:179–184.

    Article  CAS  Google Scholar 

  • Edgehill, R.U., and R.K. Finn. 1983. Activated sludge treatment of synthetic waste water containing pentachlorophenol. Biotechnol. Bioeng. 25:2165–2176.

    Article  CAS  Google Scholar 

  • Edgehill, R.U. 1995. Removal of pentachlorophenol from soil by Arthrobacter strain ATCC 33790. In: Bioaugmentation for site remediation (Edited by R.E. Hinchee, J. Fredrickson, and B.C. Alleman. 1995b. Book 3(3) of the third international in situ and on-site bioreclamation symposium (San Diego, USA). Battelle Press, Columbus, USA.

    Google Scholar 

  • Erickson, B.D., and F.J. Mondello. 1993. Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl. Environ. Microbiol. 59:3858–3862.

    CAS  Google Scholar 

  • Ettala, M., J. Koskela, and A. Kiesilä. 1992. Removal of chlorophenols in a municipal sewage treatment plant using activated sludge Water Res. 26:797–804.

    Article  CAS  Google Scholar 

  • Etzel, J.E., and E.J. Kirsch. 1975. Biological treatment of contrived and industrial waste water containing pentachlorophenol. Dev. Ind. Microbiol. 16:287–295.

    CAS  Google Scholar 

  • Fathepure, B.Z., J.M. Tiedje, and S.A. Boyd. 1988. Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzenes in anaerobic sewage sludge. Appl. Environ. Microbiol. 54:327–330.

    CAS  Google Scholar 

  • Fathepure, B.Z., and T.M. Vogel. 1991. Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor. Appl. Environ. Microbiol. 57:3418–3422.

    CAS  Google Scholar 

  • Fava, F., and L. Marchetti. 1991. Degradation and mineralization of 3-chlorobiphenyl by a mixed aerobic bacterial culture. Appl. Microbiol. Biotechnol. 36:240–245.

    Article  CAS  Google Scholar 

  • Ferschl, A., M. Loidl, G. Ditzelmüller, C. Hinteregger, and F. Streichsbier. 1991. Continuous degradation of 3-chloroaniline by calcium-alginate-entrapped cells of Pseudomonas acidovorans CA28: influence of additional substrates. Appl. Microbiol. Biotechnol. 35:544–550.

    Article  CAS  Google Scholar 

  • Field, J.A., E. de Jong, G. Feijoo-Costa, and J.A.M. de Bont. 1993. Screening for lignolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechn. 11:44–49.

    Article  CAS  Google Scholar 

  • Field, J. A., A. J. M. Stams, M. Kato, and G. Schraa. 1995. Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia. Antonie van Leeuwenhoek 67:47–77.

    Article  CAS  Google Scholar 

  • Focht, D. D., and W. Brunner. 1985. Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil. Appl. Environ. Microbiol. 50:1058–1063.

    CAS  Google Scholar 

  • Folsom, B.R., A.K. Bohner, T. Burick, and W.J. Guarini. 1995. Two-stage bioreactor to destroy chlorinated and nonchlorinated organic groundwater contaminants. In: Biological unit processes for hazardous waste treament (Edited by R.E. Hinchee, G.D. Sayles, and R.S. Skeen). Book 3(9) of the third international in situ and on-site bioreclamation symposium (San Diego, USA). Battelle Press, Columbus, USA.

    Google Scholar 

  • Fortnagel, P., H. Harms, R.-M. Wittich, S. Krohn, H. Meyer, V. Sinnwell, H. Wilkes, and W. Francke. 1990. Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Appl. Environ. Microbiol. 56:1148–1156.

    CAS  Google Scholar 

  • Foster, R.K., and R.B. McKercher. 1973. Laboratory incubation studies of chlorophenoxyacetic acids in chernozemic soils. Soil. Biol. Biochem. 5:333–337.

    Article  CAS  Google Scholar 

  • Fox, M., and S.R. Joshi. 1984. The fate of pentachlorophenol in the Bay of Quinte, Lake Ontario (Canada, USA) . J. Great Lakes Res. 10:190–196.

    Article  CAS  Google Scholar 

  • Freitag, D., I. Scheunert, W. Klein, and F. Korte. 1984. Long-term fate of 4-chloroaniline-14C in soil and plants under outdoor conditions . A contribution to terrestrial ecotoxicology of chemicals. J. Agric. Food Chem. 32:203–207.

    Article  CAS  Google Scholar 

  • Fries, G.F., and G.S. Marrow. 1984. Metabolism of chlorobiphenyls in soil. Bull. Environ. Contam. Toxicol. 33:6–12.

    Article  CAS  Google Scholar 

  • Fritz, H., W. Reineke, and E. Schmidt. 1992. Toxicity of chlorobenzene on Pseudomonas sp. strain RH01, a chlorobenzene-degrading strain. Biodegradation 2:165–170.

    Article  CAS  Google Scholar 

  • Fuchs, K., A. Schreiner, and F. Lingens. 1991. Degradation of 2-methylaniline and chlorinated isomers of 2-methylaniline by Rhodococcus rhodochrous strain CTM. J. Gen. Microbiol. 137:2033–2039.

    CAS  Google Scholar 

  • Furukawa, F. 1982. Microbial degradation of polychlorinated biphenyls, p. 33–57. In: A.M. Chakrabarty (ed.), Biodegradation and detoxification of environmental pollutants. CRC Press Inc. , Boca Raton, Fla.

    Google Scholar 

  • Furukawa, K. , and A. M. Chakrabarty. 1982. Involvement of plasmids in total degradation of chlorinated biphenyls. Appl. Environ. Microbiol. 44:619–626.

    Google Scholar 

  • Furukawa, K. 1994. Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Biodegradation 5:289–300.

    Article  CAS  Google Scholar 

  • Galceran, M.T., F.J. Santos, J. Caixach, F. Ventura, and J. Rivera. 1993. Environmental analysis of polychlorinated terphenyls: distribution in shellfish from the Ebro Delta (Mediterranean). J. Chromatography 643:399–408.

    Article  CAS  Google Scholar 

  • Gee, J.M., and J.L. Peel. 1974. Metabolism of 2,3,4,6-tetrachlorophenol by microorganisms from broiler house litter. J. Gen Microbiol. 85:237–243.

    CAS  Google Scholar 

  • Gerritse, J., V. Renard, T. M. Pedro Gomes, P. A. Lawson, M.D. Collins, and J.C. Gottschal. 1996. Desulfitobacterium sp. strain PCE 1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch. Microbiol. 165:132–140.

    Article  CAS  Google Scholar 

  • Gibson, D.T., and V. Subramanian. 1984. Microbial degradation of aromatic hydrocarbons. In: Microbial degradation of organic compounds (Edited by D.T. Gibson). Dekker inc. New York.

    Google Scholar 

  • Gibson, D.T., D.L. Cruden, J.D. Haddock, G.J. Zylstra, and J.M. Brand. 1993. Oxidation of polychlorinated biphenyls by Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707. J. Bacteriol. 175:4561–4564.

    CAS  Google Scholar 

  • Gibson, S. A., and J.M. Suflita. 1986. Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl. Environ. Microbiol. 52: 681–688 .

    CAS  Google Scholar 

  • Gold, M.H., D.K. Joshi, K. Valli, and H. Wariishi. 1994. Degradation of chlorinated phenols and chlorinated dibenzo-p-dioxins by Phanerochaete chrysosporium. In: Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds (Edited by R.E. Hinchee, A. Leeson, L. Semprini, and S. K. Ong). CRC Press, USA.

    Google Scholar 

  • Golovleva, L.A., O. Zaborina, R. Pertsova, B. Baskunov, Y. Schurukhin, and S. Kuzmin. 1992. Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation 2:201–208.

    Article  CAS  Google Scholar 

  • Golovleva, L.A., O. Zaborina, A.Y. Arinbasarova. 1993. Degradation of 2,4,6-TCP and a mixture of isomeric chlorophenols by immobilized Streptomyces rochei 303. Appl. Microbiol. Biotechnol. 38:815–819.

    Article  CAS  Google Scholar 

  • Grote, A., B. Hamburger, R. Kanne, and M. Olivier. 1983. Zum biologischen Abbau von 3,4-Dichlor-l-nitrobenzol unter den Bedingungen industrieller Klaranlagen. Vom Wasser 60:191–196.

    CAS  Google Scholar 

  • Guiot, S.R., J.-C. Frigon, R. Albu-Cimpoia, S. Deschamps, X.Q. Zhou, J. Hawari, S. Sanschagrin, and R. Samson. 1995. Biotreatment of aqueous extract from chlorobenzenecontaminated soil. In: Biological unit processes for hazardous waste treament (Edited by R.E. Hinchee, G.D. Sayles, and R.S. Skeen). Book 3(9) of the third international in situ and onsite bioreclamation symposium (San Diego, USA). Battelle Press, Columbus, USA.

    Google Scholar 

  • Gvozdyak, P. I., N. I. Kulikov, N.F. Mogilevich, A. B. Tashirev, A. B. Tikhnenko, and V. I. Nezdoiminov. 1982. Microbial removal of p- nitrochlorobenzene from water under anaerobic conditions. Khim. Tekhnol. Vody, 4:473–474. (russ.).

    CAS  Google Scholar 

  • Häggblom, M.M., L.J. Nohynek, and M.S. Salkinoja-Salonen. 1988. Degradation of omethylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl. Environ. Microbiol. 54:3043–3052.

    Google Scholar 

  • Häggblom, M.M., and L.Y. Young. 1990. Chlorophenol degradation coupled to sulfate reduction. Appl. Environ. Microbiol. 56:3255–3260.

    Google Scholar 

  • Häggblom, M.M. 1990. Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds. J. Basic Microbiol. 30:115–141.

    Article  Google Scholar 

  • Häggblom, M. M., M.D. Rivera, and L.Y. Young. 1993. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids. Appl. Environ. Microbiol. 59:1162–1167.

    Google Scholar 

  • Häggblom, M.M., and L.Y. Young. 1995. Anaerobic degradation of halogenated phenols by sulfate-reducing consortia. Appl. Environ. Microbiol. 61:1546–1550.

    Google Scholar 

  • Haider, K., G. Jagnow, R. Kohnen, und S.U. Lin. 1974. Abbau chlorierter Benzole, Phenole und Cyclohexan-Derivate durch Benzol und Phenol verwertende Bodenbakterien unter aeroben Bedingungen. Arch. Microbiol. 96:183–200.

    Article  CAS  Google Scholar 

  • Haigler, B.E., S.F. Nishino, and J.C. Spain. 1988. Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol. 54:294–301.

    CAS  Google Scholar 

  • Haigler, B. E., and J.C. Spain. 1989. Degradation of p-chlorotoluene by a mutant of Pseudomonas sp. strain J56. Appl. Environ. Microbiol. 55:372–379.

    CAS  Google Scholar 

  • Haigler, B. E., C. A. Pettigrew, and J.C. Spain. 1992. Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. strain JS150. Appl. Environ. Microbiol. 58:2237–2244.

    CAS  Google Scholar 

  • Hain, Z., B. Dalmacije, D. Misković, and E. Karlović. 1990. Preparation of drinking water from the surface water of the danube-A case study. Water Sci. Tech. 22:253–258.

    CAS  Google Scholar 

  • Halden, K. 1991. Methanotrophic bacteria for the in-situ renovation of polluted aquifers. Trans IChemE. 69:173–179.

    CAS  Google Scholar 

  • Halden, K., and H. A. Chase. 1991. Methanotrophs for renovation of polluted aquifers. Trans IChemE. 69:181–183.

    CAS  Google Scholar 

  • Hallinger, S., W. Ziegler, P.R. Wallnofer, and G. Engelhardt. 1988. Verhalten von 3,4-Dichoranilin in wachsenden Pilzkulturen. Chemosphere 17:543–550.

    Article  CAS  Google Scholar 

  • Hankin, L., and B.L. Sawhney. 1984. Microbial degradation of polychlorinated biphenyls in soil. Soil Science 137:401–407.

    Article  CAS  Google Scholar 

  • Harms, H., R.-H. Wittich, V. Sinnwell, H. Meyer, P. Fortnagel, and W. Franke. 1990. Transformation of dibenzo-p-dioxin by Pseudomonas sp. strain HH69. Appl. Environ. Microbiol. 56:1157–1159.

    CAS  Google Scholar 

  • Harms, H., and A.J.B. Zehnder. 1992. Biodegradation of dibenzofurans in soil: degradation of dibenzofuran and 3-chlorodibenzofuran in a soil-model system. In: Soil decontamination using biological processes. Schön and Wetzel, Germany.

    Google Scholar 

  • Harms, H., H. Wilkes, R.-H. Wittich, and P. Fortnagel. 1995. Metabolism of hydroxydibenzofurans, methoxydibenzofurans, acetoxydibenzofurans, and nitrodibenzofurans by Sphingomonas sp. HH69. Appl. Environ. Microbiol. 61:2499–2505.

    CAS  Google Scholar 

  • Harms, H., and A.J.B. Zehnder. 1995. Bioavailability of sorbed 3-chlorodibenzofuran. Appl. Environ. Microbiol. 61:27–33.

    CAS  Google Scholar 

  • Haugland, R.A., D.L. Schlemm, R.P. Lyons III, P.R. Sferra, and A.M. Chakrabarty. 1990. Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Appl. Environ. Microbiol. 56:1357–1362.

    CAS  Google Scholar 

  • Havel, J., and W. Reineke. 1992. Degradation of Aroclor 1221 and survival of strains in soil microcosms. Appl. Microbiol. Biotechnol. 38:129–134.

    Article  CAS  Google Scholar 

  • Heijman, C. G., C. Holliger, M. A. Glaus, R.P. Schwarzenbach, and J. Zeyer. 1993. Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl. Environ. Microbiol. 12:4350–4353.

    Google Scholar 

  • Hendriksen, H. V., and B. K. Ahring. 1992. Metabolism and kinetics of pentachlorophenol transformation in anaerobic granular sludge. Appl. Microbiol. Biotechnol. 37:662–666.

    Article  CAS  Google Scholar 

  • Hendriksen, H. V., and B. K. Ahring. 1993. Anaerobic dechlorination of pentachlorophenol in fixed-film and upflow anaerobic sludge blanket reactors. Biodegradation 3:399–408.

    Article  CAS  Google Scholar 

  • Hickey, W.J., V. Brenner, and D.D. Focht. 1992. Mineralization of 2-chloro- and 2,5-dichlorobiphenyl by Pseudomonas sp. strain UCR2. FEMS Microbiol. Lett. 98:175–180.

    Article  CAS  Google Scholar 

  • Hickey, W. J., D. B. Searles, and D.D. Focht. 1993. Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria. Appl. Environ. Microbiol. 59:1194–1200.

    CAS  Google Scholar 

  • Hinteregger, C., M. Loidl, J. Stockinger, A. Ferschl, and F. Streichsbier. 1992. Detoxification of 3-chloro-4-methylaniline by Pseudomonas capacia CMA 1. Dechema Biotechnology Conferences. VCH Verlagsgesellschaft, Germany.

    Google Scholar 

  • Hoff, T., S.Y. Liu, and J.M. Bollag. 1985. Transformation of halogen- alkyl- and alkoxysubstituted anilines by a laccase of Trametes versicolor. Appl. Environ. Microbiol. 49 :1040–1045 .

    CAS  Google Scholar 

  • Hofrichter, M., T. Günther, and W. Fritsche. 1993. Metabolism of phenol, chloro- and nitrophenols by the Penicillium strain Bi 7/2 isolated from a contaminated soil. Biodegradation 3:415–421.

    Article  CAS  Google Scholar 

  • Holliger, C., G. Schraa, A. J. M. Stams, and A. J. B. Zehnder. 1992. Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2, 3-trichlorobenzene to 1, 3-dichlorobenzene. Appl. Environ. Microbiol. 58:1636–1644.

    CAS  Google Scholar 

  • Holroyd, M.L., and P. Caunt. 1995. Large-scale soil bioremediation using white rot fungi. In: Bioaugmentation for site remediation (Edited by R.E. Hinchee, J. Fredrickson, and B.C. Alleman. 1995b. Book 3(3) of the third international in situ and on-site bioreclamation symposium (San Diego, USA). Battelle Press, Columbus, USA.

    Google Scholar 

  • Hötmann, U., and H.-J . Rehm. 1992. Microbial degradation of 1-chloronaphthalene as an example of halogenated polyaromatic hydrocarbons. In: Dechema biotechnology conferences 5. VCH Verlagsgesellschaft, Germany.

    Google Scholar 

  • Horowitz, A., D. R. Shelton, C.P. Cornell, and A. M. Tiedje. 1982. Anaerobic degradation of aromatic compounds in sediments and digested sludge. Dev. Ind. Microbiol. 23:435–444.

    CAS  Google Scholar 

  • Horowitz, A., J.M. Suflita, and J.M. Tiedje. 1983. Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms. Appl. Environ. Microbiol. 45:1459–1465.

    CAS  Google Scholar 

  • Hsieh, C.M., and S.K. Banerji. 1990. Degradation of pentachlorophenol by lignases produced by Phanerochaete chrysosporium. Hazardous Waste Res. Conf., may 21–22, Kansas State University, Manhattan, USA.

    Google Scholar 

  • Hu, Z.-C ., R. A. Korus, W. E. Levinson, and R.L. Crawford. 1994. Adsorption and biodegradation of pentachlorophenol by polyurethane-immobilized Flavobacterium. Environ. Sci. Technol. 28 : 491–496 .

    Article  CAS  Google Scholar 

  • Hwang, H.M., R.E. Hodson, and R.F. Lee. 1985. Photochemical and microbial degradation of 2,4,5-trichloroaniline in a freshwater lake. Appl. Environ. Microbiol. 50:1177–1180.

    CAS  Google Scholar 

  • Hwang, H.M., R.E. Hodson, and R.F. Lee. 1986. Degradation of phenol and chlorophenols by sunlight and microbes in estuarine water. Environ. Sci. Technol. 20:1002–1007.

    Article  CAS  Google Scholar 

  • Ide, A., Y. Niki, F. Sakamoto, I. Watanabe, and H. Watanabe. 1972. Decomposition of pentachlorophenol in paddy soil. Agric. Biol. Chem. 36:1937–1994.

    Article  CAS  Google Scholar 

  • Janke, D., B.P. Baskunov, M. Y. Nefedova, A. M. Zyakun, and L.A. Golovleva. 1984. Incorporation of 1802 during cometabolic degradation of 3-chloroaniline by Rhodococcus sp. AN117. Z. Allgem. Mikrobiol. 4:253–259.

    Article  Google Scholar 

  • Janke, D., B. Schukat, and H. Prauser. 1986. Screening among nocardioform bacteria for strains able to degrade aniline and monochloroanilines. J. Basic Microbiol. 26:341–350.

    Article  CAS  Google Scholar 

  • Janke, D., T. Al-Mofarji, G. Straube, P. Schumann, and H. Prauser. 1988a. Critical steps in degradation of chloroaromatics by Rhodococcus. I. Initial enzyme reactions involved in catabolism of aniline, phenol and benzoate by Rhodococcus sp. AN117 and AN213. J. Basic Microbiol . 28 : 509–518 .

    Article  CAS  Google Scholar 

  • Janke, D., T. A1-Mofarji, and B. Schukat. 1988b. Critical steps in degradation of chloroaromatics by Rhodococci. II. Whole-cell turnover of different monochloroaromatic non-growth substrates in the absence /presence of glucose. J. Basic Microbiol. 28:519–528.

    Article  CAS  Google Scholar 

  • Janke, D., W. Ihn, and D. Tresselt. 1989. Critical steps in degradation of chloroaromatics by Rhodococci. IV. Detailed kinetics of substrate removal and product formation by resting preadapted cells. J. Basic Microbiol. 29:305–314.

    Article  CAS  Google Scholar 

  • Janke, D., and W. Ihn. 1989. Cometabolic turnover of aniline, phenol, and some of their monochlorinated derivates by the Rhodococcus mutant strain AM 144. Arch. Microbiol. 152:347–352.

    Article  CAS  Google Scholar 

  • Jones, P.A. 1984. Chlorophenols and their impurities in the Canadian environment: 1983 Supplement, Ottawa, Environmental Protection Service, Environment Canada, 93 pp (Report No. EPS-3-EP-84–3).

    Google Scholar 

  • Jørgensen, K.S. 1995. Soil contamination caused by chlorophenol wood preservatives — possibilities for biotechnical remediation. In: Environmental research in Finland today (Edited by E. Saski, and T. Saarinen). Proceedings of the second Finnish conference of environmental sciences. Hakapaino Oy, Helsinki, Finland.

    Google Scholar 

  • Joshi, D.K., and M.H. Gold. 1993. Degradation of 2,4,5-trichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59:1779–1785.

    CAS  Google Scholar 

  • Karlson, U., R. Miethling, K. Schu, S. Schiøtz Hansen, and J. Uotila. 1995. Biodegradation of PCP in soil. In: Bioremediation of recalcitrant organics (Edited by R.E. Hinchee, R.E. Hoeppel, and D. B. Anderson) . Book 3(7) of the third international in situ and on-site bioreclamation symposium (San Diego, USA). Battelle Press, Columbus, USA.

    Google Scholar 

  • Karns, J.S., J.J. Kilbane, S. Duttagupta, and A.M. Chakrabarty. 1983. Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia. Appl. Environ. M icrobiol. 46:1176–1181.

    CAS  Google Scholar 

  • Kearney, P.C., E.A. Woolson, and C.P. Ellington, Jr. 1972. Persistence and metabolism of chlorodioxins in soils. Environ. Sci. Technol. 6:1017–1019.

    Article  CAS  Google Scholar 

  • Kennes, C., W.-M. Wu, L. Bhatnagar, and J.G. Zeikus. 1996. Anaerobic dechlorination and mineralization of pentachlorophenol and 2,4,6-trichlorophenol by methanogenic pentachlorophenol-degrading granules. Appl. Microbiol. Biotechnol. 44:801–806.

    Article  CAS  Google Scholar 

  • Keuning, S. , and D. Jager. 1994. Simultaneous degradation of chlorobenzene, toluene, xylene, and ethanol by pure and mixed Pseudomonas cultures. In: Applied biotechnology for site remediation (Edited by R.E. Hinchee, D.B. Anderson, F.B. Metting jr., and G.D. Sayles). CRC Press, USA.

    Google Scholar 

  • Kilbane, J.J., D.K. Chatterjee, J.S. Karns, S.T. Kellog, and A.M. Chakrabarty. 1982. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl. Environ. Microbiol. 44:72–78.

    CAS  Google Scholar 

  • Kimbara, K., T. Hashimoto, M. Fukuda, T. Koana, M. Takagi, M. Oishi, and K. Yano. 1988. Isolation and characterization of a mixed culture that degrades polychlorinated biphenyls. Agric. Biol. Chem. 52:2885–2891.

    Article  CAS  Google Scholar 

  • Kincannon, D.F., A. Weinert, R. Padorr, and E.L. Stover. 1983. Predicting treatability of multiple organic priority pollutant waste waters from single-pollutant treatability studies. Proc. Ind. Waste Conf. 37:641–650.

    CAS  Google Scholar 

  • Kiyohara, H. , T. Hatta, Y. Ogawa, T. Kakuda, H. Yokoyama, and N. Takizawa. 1992. Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols. Appl. Environ. Microbiol. 58:1276–1283.

    CAS  Google Scholar 

  • Klečka, G.M., and D.T. Gibson. 1980. Metabolism of dibenzo-p-dioxin and chlorinated dibenzop-dioxins by a Beijerinckia species. Appl. Environ. Microbiol. 39:288–296.

    Google Scholar 

  • Klečka, G.M., and D.T. Gibson. 1981. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl. Environ. Microbiol. 41:1159–1165.

    Google Scholar 

  • Klečka, G.M., and W.J. Maier. 1985. Kinetics of microbial growth on pentachlorophenol. Appl. Environ. Microbiol. 49:46–53.

    Google Scholar 

  • Klibanov, A.M., T.-M. Tu, and K.P. Scott. 1983. Peroxidase-catalyzed removal of phenols from coal-conversion waste waters. Science 221:259–261.

    Article  CAS  Google Scholar 

  • Knackmuss, H.-J., and M. Hellwig. 1978. Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B13. Arch. Microbiol. 117:1–7.

    Article  CAS  Google Scholar 

  • Kneer, F.X. 1984. Sorptionsmaterial fur eine Einrichtung zum Abscheiden von Verunreinigungen aus Gasen und Verfahren zu seiner Herstellung. Ger. Offen. DE 3244093 Al, 27 sept. 1984, 12 pp.

    Google Scholar 

  • Kohler, H.-P.E., D. Kohler-Staub, and D.D. Focht. 1988. Cometabolism of polychlorinated biphenyls: Enhanced transformation of Aroclor 1254 by growing bacterial cells. Appl. Environ. Microbiol. 54:1940–1945.

    Google Scholar 

  • Kohring, G.-W., X. Zhang, and J. Wiegel. 1989. Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate. Appl. Environ. Microbiol. 55:2735–2737.

    CAS  Google Scholar 

  • Konopka, A., D. Knight, and R.F. Turco. 1989. Characterization of a Pseudomonas sp. capable of aniline degradation in the presence of secondary carbon sources. Appl. Environ. Microbiol. 55 : 385–389.

    Google Scholar 

  • Krug, M., H. Ziegler, and G. Straube. 1985. Degradation of phenolic compounds by the yeast Candida tropicalis HP15. I. Physiology of growth and substrate utilization. J. Basic Microbiol. 25 :103 -110 .

    Article  CAS  Google Scholar 

  • Kuhn, E.P., P.J. Colberg, J.L. Schoor, O. Wanner, A.J.B. Zehnder, and R.P. Schwarzenbach. 1985. Microbial transformations of substituted benzenes during infiltration of river water to groundwater: laboratory column studies. Environ. Sci. Technol. 19:961–968.

    Article  CAS  Google Scholar 

  • Kuhn, E.P., and J.M. Suflita. 1989. Sequential reductive dehalogenation of chloroanilines by microorganisms from a methanogenic aquifer. Environ. Sci. Technol. 23:848–852.

    Article  CAS  Google Scholar 

  • Kuhn, E.P., G.T. Townsend, and J.M. Suflita. 1990. Effect of sulfate and organic carbon supplements on reductive dehalogenation of chloroanilines in anaerobic aquifer slurries. Appl. Environ. Microbiol. 56:2630–2637.

    CAS  Google Scholar 

  • Laine, M.M., and K.S. Jørgensen. 1995. Pilot scale composting of chlorophenol-contaminated saw mill soil. In: Environmental research in Finland today (Edited by E. Saski, and T. Saarinen). Proceedings of the second Finnish conference of environmental sciences. Hakapaino Oy, Helsinki, Finland.

    Google Scholar 

  • Laine, M.M., and K.S. Jørgensen. 1996. Straw compost and bioremediated soil as inocula for the bioremediation of chlorophenol-contaminated soil. Appl. Environ. Microbiol. 62:1507–1513.

    CAS  Google Scholar 

  • Lajoie, C. A., G.J. Zylstra, M.F. DeFlaun, and P. F. Storm. 1993. Development of field application vectors for bioremediation of soils contaminated with polychlorinated biphenyls. Appl. Environ. Microbiol. 59:1735–1741.

    CAS  Google Scholar 

  • Lajoie, C. A., A. C. Layton, and G.S. Sayler. 1994. Cometabolic oxidation of polychlorinated biphenyls in soil with a surfactant-based field application vector. Appl. Environ. Microbiol. 60:2826–2833.

    CAS  Google Scholar 

  • Lamar, R.T., J.A. Glaser, and T.K. Kirk. 1989. Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white rot basidiomycete Phanerochaete chrysosporium: mineralization, volatilization and depletion of PCP. Soil Biol. Biochem. 22:433–440.

    Article  Google Scholar 

  • Lamar, R.T., M.J. Larsen, and T.K. Kirk. 1990. Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Appl. Environ. Microbiol. 56:3519–3526.

    CAS  Google Scholar 

  • Lamar, R.T., J.W. Evans, and J.A. Glaser. 1993. Solid-phase treatment of a pentachlorophenolcontaminated soil using lignin-degrading fungi. Environ. Sci. Technol. 27: 2566–2571.

    Article  CAS  Google Scholar 

  • Lammerding, A.M., N.J. Bunce, R.L. Merrick, and C.T. Corke. 1982. Structural effects on the microbial diazotization of anilines. J. Agric. Food Chem. 30:644–647.

    Article  CAS  Google Scholar 

  • Latorre, J., W. Reineke, and H.J. Knackmuss. 1984. Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Arch. Microbiol. 140:159–165.

    Article  CAS  Google Scholar 

  • Layton, A. C., C. A. Lajoie, J.P. Easter, J. Sanseverino, and G.S. Sayler. 1996. Bioremediation strategies integrating surfactant-enhanced solubilization of hydrophobic pollutants with field application vectors. In: Proceedings of the symposium “Biotechnology in the sustainable environment”. April 14–17, Knoxville, USA.

    Google Scholar 

  • Lee, M.D., W.A. Butler, T.F. Mistretta, I.J. Zanikos, and R.E. Perkins. 1994. Biological treatability studies on surface impoundment sludge from a chemical manufacturing facility. In: Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds (Edited by R.E. Hinchee, A. Leeson, L. Semprini, and S.K. Ong). CRC Press, USA.

    Google Scholar 

  • Lehning, A., B. Happe, K.N. Timmis, and D.H. Pieper. 1996. Metabolism of chlorotoluenes by enriched and constructed bacteria. In: Proceedings of the UIB-GBF-CSIC-TUB symposium: Biodegradation of organic pollutants. Palma de Mallorca, 29 june-3 july, Mallorca, Spain.

    Google Scholar 

  • Li, D.-Y., J. Eberspächer, B. Wagner, J. Kuntzer, and F. Lingens. 1991. Degradation of 2,4,6–trichlorophenol by Azotobacter sp. strain GP1. Appl. Environ. Microbiol. 57:1920–1928.

    CAS  Google Scholar 

  • Lin, J.-E., H.Y. Wang, and R.F. Hickey. 1990. Degradation kinetics of pentachlorophenol by Phanerochaete chrysosporium. Biotech. Bioeng. 35:1125–1134.

    Article  CAS  Google Scholar 

  • Lin, J.-E., H.Y. Wang, and R.F. Hickey. 1991. Use of coimmobilized biological systems to degrade toxic organic compounds. Biotech. Bioeng. 38:273–279.

    Article  CAS  Google Scholar 

  • Livingston, A.G. 1991. Biodegradation of 3,4-dichloroaniline in a fluidized bed bioreactor and a steady-state biofilm kinetic model. Biotechnol. Bioeng. 38:260–272.

    Article  CAS  Google Scholar 

  • Livingston, A.G, and A. Willacy. 1991. Degradation of 3,4-dichloroaniline in synthetic and industrially produced waste waters by mixed cultures freely suspended and immobilized in a packed-bed reactor. Appl. Microbiol. Biotechnol. 35:551–557.

    CAS  Google Scholar 

  • Livingston, A.G. 1993. A novel membrane bioreactor for detoxifying industrial waste water: II. Biodegradation of 3-chloronitrobenzene in an industrially produced waste water. Biotechnol. Bioeng. 41:927–936.

    Article  CAS  Google Scholar 

  • Liu, D. 1982. Assessment of continuous biodegradation of commercial PCB formulations. Bull. Environm. Contam. Toxicol. 29:200–207.

    Article  CAS  Google Scholar 

  • Liu, S. M., and W.J. Jones. 1995. Biotransformation of dichloroaromatic compounds in nonadapted and adapted freshwater sediment slurries. Appl. Microbiol. Biotechnol. 43:725–732.

    Article  CAS  Google Scholar 

  • Logan, B. E., B.C. Alleman, G.L. Amy, and R.L. Gilbertson. 1994. Adsorption and removal of pentachlorophenol by white rot fungi in batch culture. Water Res. 7:1533–1538.

    Article  Google Scholar 

  • Loidl, M., C. Hinteregger, G. Ditzelmüller, A. Ferschl, and F. Streichsbier. 1990. Degradation of aniline and monochlorinated anilines by soil-born Pseudomonas acidovorans strains. Arch. Microbiol. 155 : 56–61.

    Article  CAS  Google Scholar 

  • Lyons, C.D., S.E. Katz, and R. Bartha. 1985. Persistence and mutagenic potential of herbicidederived aniline residues in pond water. Bull. Environ. Contam. Toxicol. 35:696–703.

    Article  CAS  Google Scholar 

  • Ma, R.X., B. Luan, Q.X. Zhao, M.J. Xeu. 1980. An approach to biodegradation of chlorobenzene compounds. Huan Ching K’ o Hsueh 1(2) :14–16 .

    CAS  Google Scholar 

  • Madsen, T. , and J. Aamand. 1991. Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl. Environ. Microbiol. 57:2453–2458.

    CAS  Google Scholar 

  • Madsen, T. , and J. Aamand. 1992. Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture. Appl. Environ. Microbiol. 58:557–561.

    CAS  Google Scholar 

  • Madsen, T., and D. Licht. 1992. Isolation and characterization of an anaerobic chlorophenoltransforming bacterium. Appl. Environ. Microbiol. 58:2874–2878.

    CAS  Google Scholar 

  • Magar, V. S., H. Mohn, J. A. Puhakka, H.D. Stensel, and J.F. Ferguson. 1995. Reductive dechlorination of pentachlorophenol by enrichments from municipal digester sludge. In: Bioremediation of chlorinated solvents (Edited by R.E. Hinchee, A. Leeson, and L. Semprini). Book 3(4) of the third international in situ and on-site bioreclamation symposium (San Diego, USA). Battelle Press, Columbus, USA.

    Google Scholar 

  • Mahajan, M. C., P.S. Phale, and C. S. Vaidyanathan. 1994. Evidence for the involvement of multiple pathways in the biodegradation of 1- and 2-methylnaphthalene by Pseudomonas putida CSV86. Arch. Microbiol. 161:425–433.

    Article  CAS  Google Scholar 

  • Mars, A. E. , T. Kasberg, S. R. Kaschabek, M.H. van Agteren, D. B. Janssen and W. Reineke. 1997. Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J. Bacteriol. in press.

    Google Scholar 

  • Masse, R., F. Messier, L. Peloquin, C. Ayotte, and M. Sylvestre. 1984. Microbial biodegradation of 4-chlorobiphenyl, a model compound of chlorinated biphenyls. Appl. Environ. Microbiol. 47:947–951.

    CAS  Google Scholar 

  • Matsumura, F., and H.J. Benezet. 1973. Studies on the bioaccumulation and microbial degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Environ. Health Persp. 5:255–258.

    Google Scholar 

  • Matsumura, F., J. Quensen, G. Tsushimoto. 1983. Microbial degradation of TCDD in a model ecosystem. Environ. Sci. Res. 26:191–219.

    CAS  Google Scholar 

  • McAllister, K.A., H. Lee, J.T. Trevors. 1996. Microbial degradation of pentachlorophenol. Biodegradation 7:1–40

    Article  CAS  Google Scholar 

  • McBain, A., F. Cui, L. Herbert, and J.N.R. Ruddick. 1995. The microbial degradation of chlorophenolic preservatives in spent, pressure-treated timber. Biodegradation 6:47–55.

    Article  CAS  Google Scholar 

  • Meer, J.R. van der, W. Roelofsen, and A.J.B. Zehnder. 1987. Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene by Pseudomonas sp. P51 in nonsterile soil columns. FEMS Microbiol. Ecol. 45:333–341.

    Article  Google Scholar 

  • Meer, J.R. van der, T.N.P. Bosma, W.P. de Bruin, H. Harms, C. Holliger, H.H.M. Rijnaarts, M.E. Tros, G. Schraa, and A.J.B. Zehnder. 1992. Versatility of soil column experiments to study biodegradation of halogenated compounds under environmental conditions. Biodegradation 3:265–284.

    Article  Google Scholar 

  • Menke, B., and H.-J . Rehm. 1992. Degradation of mixtures of monochlorophenols and phenol as substrates for free and immobilized cells. Appl. Microbiol. Biotechnol. 37:655–661.

    Article  CAS  Google Scholar 

  • Middeldorp, P., M. Briglia, V. Kitunen, R. Valo, and M. Salkinoja-Salonen. 1990. Biodegradation and -transformation of polychlorinated phenols in soil. In: Proceedings of the 5th Eur. Congress on Biotechnology (Edited by C. Christiansen, L. Munck, and J. Villadsen). Munksgaard, Denmark.

    Google Scholar 

  • Mikesell, M.D., and S.A. Boyd. 1986. Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl. Environ. Microbiol. 52:861–865.

    CAS  Google Scholar 

  • Mileski, G.J., J.A. Bumpus, M.A. Jurek, and S.D. Aust. 1988. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54:2885–2869.

    CAS  Google Scholar 

  • Mohn, W.W., and K.J. Kennedy. 1992a. Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1. Appl. Environ. Microbiol. 58:1367–1370.

    CAS  Google Scholar 

  • Mohn, W.W., and K.J. Kennedy. 1992b. Limited degradation of chlorophenols by anaerobic sludge granules. Appl. Environ. Microbiol. 58:2131–2136.

    CAS  Google Scholar 

  • Mokross, H., E. Schmidt, and W. Reineke. 1990. Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett. 71:179–186.

    Article  CAS  Google Scholar 

  • Monna, L. , T. Omori, and T. Kodama. 1993. Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Appl. Environ. Microbiol. 59:285–289.

    CAS  Google Scholar 

  • Morgan, P., S.T. Lewis, and R.J. Watkinson. 1991. Comparison of abilities of white rot fungi to mineralize selected xenobiotic compounds. Appl. Microbiol. Biotechnol. 34:693–696.

    Article  CAS  Google Scholar 

  • Morris, C.M., and E.A. Barnsley. 1982. The cometabolism of 1- and 2-chloronaphthalene by Pseudomonads. Can. J. Microbiol. 28:73–79.

    Article  CAS  Google Scholar 

  • Morris, P.J., W.W. Mohn, J.F. Quensen III, J.M. Tiedje, and S.A. Boyd. 1992. Establishment of a polychlorinated biphenyl-degrading enrichment culture with predominantly meta dechlorination. Appl. Environ. Microbiol. 58:3088–3094.

    CAS  Google Scholar 

  • Neilson, A.H. 1990. The biodegradation of halogenated organic compounds. J. Appl. Bacteriol. 69:445–470

    Article  CAS  Google Scholar 

  • Nevalainen, I., E. Kostyál, E.-L. Nurmiaho-Lassila, J.A. Puhakka, and M.S. Salkinoja-Salonen. 1993. Dechlorination of 2,4,6-trichlorophenol by a nitrifying biofilm. Water Res. 27:757–767.

    Article  CAS  Google Scholar 

  • Nicholson, D. K. , S.L. Woods, J.D. Istok, and D.C. Peek. 1992. Reductive dechlorination of chlorophenols by a pentachlorophenol-acclimated methanogenic consortium. Appl. Environ. Microbiol. 58 : 2280–2286 .

    CAS  Google Scholar 

  • Nielsen, P.H., and T.H. Christensen. 1994. Spatial variability of aerobic degradation potential for organic pollutants. In: Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds (Edited by R.E. Hinchee, A. Leeson, L. Semprini, and S. K. Ong). CRC Press, USA.

    Google Scholar 

  • Nies, L., and T.M. Vogel. 1990. Effects of organic substrates on dechlorination of Aroclor 1242 in anaerobic sediments. Appl. Environ. Microbiol. 56:2612–2617.

    CAS  Google Scholar 

  • Nishino, S. F., J.C. Spain, L.A. Belcher, and C. D. Litchfield. 1992. Chlorobenzene degradation by bacteria isolated from contaminated groundwater. Appl. Environ. Microbiol. 58:1719–1726.

    CAS  Google Scholar 

  • Nohynek, L.J., E.-L. Nurmiaho-Lassila, and M.S. Salkinoja-Salonen. 1995. Taxonomic hotspots of pentachlorophenol (PCP) degrading bacteria. In: Environmental research in Finland today (Edited by E. Saski, and T. Saarinen). Proceedings of the second Finnish conference of environmental sciences. Hakapaino Oy, Helsinki, Finland.

    Google Scholar 

  • Øfjord, G. D., J. A. Puhakka, and J.F. Ferguson. 1994. Reductive dechlorination of Aroclor 1254 by marine sediment cultures. Environ. Sci. Technol. 28:2286–2294.

    Article  Google Scholar 

  • Oh, Y.-S., and R. Bartha. 1994. Design and performance of a trickling air biofilter for chlorobenzene and o-dichlorobenzene vapors. Appl. Environ. Microbiol. 60:2717–2722.

    CAS  Google Scholar 

  • Okey, R. W., and R. H. Bogan. 1965. Apparent involvement of electronic mechanisms in limiting microbial metabolism of pesticides. J. Water Poll. Control Fed. 37:692–712.

    CAS  Google Scholar 

  • Oldenhuis, R., L. Kuijk, A. Lammers, D.B. Janssen, and B. Witholt. 1989. Degradation of chlorinated and non-chlorinated aromatic solvents in soil suspensions by pure bacterial cultures. Appl . Microbiol . Biotechnol. 30:211–217.

    Article  CAS  Google Scholar 

  • Olsen, R.H., and P.A. Vandenbergh. 1983. Pseudomonas compositions. Eur. Pat. Appl. EP 76953 A2, 20 apr 1983, 12 pp. (patent).

    Google Scholar 

  • Oltmanns, R.H., H.G. Rast, and W. Reineke. 1988. Degradation of 1,4-dichlorobenzene by enriched and constructed bacteria. Appl. Microbiol. Biotechnol. 28:609–616.

    Article  CAS  Google Scholar 

  • Orser, C. S., and C. C. Lange. 1994. Molecular analysis of pentachlorophenol degradation. Biodegradation 5:277–288.

    Article  CAS  Google Scholar 

  • Orser, C. S., J. Dutton, C. C. Lange, P. Jablonski, L. Xun. , and M. Hargis. 1993. Characterization of a Flavobacterium glutathione S-transferase gene involved in reductive dechlorination. J. Bacteriol. 175:2640–2644.

    CAS  Google Scholar 

  • Pagano, J.J., R.J. Scrudato, R.N. Roberts, and J.C. Bemis. 1995. Reductive dechlorination of PCB-contaminated sediments in an anaerobic bioreactor system. Environ. Sci. Technol. 29:2584–2589.

    Article  CAS  Google Scholar 

  • Pal, N., G. Lewandowski, and P.M. Armenante. 1995. Process optimization and modeling of trichlorophenol degradation by Phanerochaete chrysosporium. Biotechnol. Bioeng. 46:599–609.

    Article  CAS  Google Scholar 

  • Parker, W. J., H.D. Monteith, and H. Melcer. 1994. Estimation of anaerobic biodegradation rates for toxic organic compounds in municipal sludge digestion. Water Res. 8:1779–1789.

    Article  Google Scholar 

  • Parsons, J.R., D.T.H.M. Sijm, A. van Laar, and O. Hutzinger. 1988. Biodegradation of chlorinated biphenyls and benzoic acids by a Pseudomonas strain. Appl. Microbiol. Biotechnol. 29:81–84.

    Article  CAS  Google Scholar 

  • Parsons, J.R. 1988. Biodegradation of chlorinated aromatic compounds in chemostat cultures. Ph. D. Thesis, University of Amsterdam, The Netherlands.

    Google Scholar 

  • Parsons, J.R., H. Goorissen, A.R. Weiland, J.A. de Bruijne, D. Springael, D. v.d. Lelie, and M. Mergeay. 1995. Substrate range of the (chloro)biphenyl degradation pathway of Alcaligenes sp. JB1. In: Microbial processes for bioremediation (Edited by R.E. Hinchee, C.M. Vogel, and F.J. Brockman). Book 3(8) of the third international in situ and on-site bioreclamation symposium (San Diego, USA). Battelle Press, Columbus, USA.

    Google Scholar 

  • Patterson, J. W., and P.S. Kodukala. 1981. Biodegradation of hazardous organic priority pollutants. Chem. Eng. Progr. 77:48–55.

    CAS  Google Scholar 

  • Peck, P.C., S.H. Rhodes, and T.F. Guerin. 1995. Bioremediation of chlorinated benzene compounds. In: Bioremediation of chlorinated solvents (Edited by R.E. Hinchee, A. Leeson, and L. Semprini). Book 3(4) of the third international in situ and on-site bioreclamation symposium (San Diego, USA). Battelle Press, Columbus, USA.

    Google Scholar 

  • Perkins, P.S., S.J. Komisar, J.A. Puhakka, and J.F. Ferguson. 1994. Effects of electron donors and inhibitors on reductive dechlorination of 2,4,6-trichlorophenol. Water Res. 28:2101–2107.

    Article  CAS  Google Scholar 

  • Pettigrew, C.A., B.E. Haigler, and J.C. Spain. 1991. Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain. Appl. Environ. Microbiol. 57:157–162.

    CAS  Google Scholar 

  • Philippi, M., J. Schmid, H.K. Wipf, and R. Hutter. 1982. A microbial metabolite of TCCD. Experientia 38:659–661.

    Article  CAS  Google Scholar 

  • Pierce, G. E., J.B. Robinson, and J.R. Colaruotolo. 1983. Substrate diversity of Pseudomonas spp. containing chlorotoluene degradative plasmids. Dev. Ind. Microbiol. 24:499–507.

    CAS  Google Scholar 

  • Pignatello, J.J., M.M. Martinson, J.G. Steiert, R.E. Carlson, and R.L. Crawford. 1983. Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams. Appl. Environ. Microbiol. 46:1024–1031.

    CAS  Google Scholar 

  • Pieper, D. H., R. Winkler, and H. Sandermann. 1992. Formation of a toxic dimerization product of 3,4-dichloroaniline by lignin peroxidase from Phanerochaete chrysosporium. Angew. Chem. 104:60–61.

    Article  CAS  Google Scholar 

  • Pfarl, C., G. Ditzelmüller, M. Loidl, and F. Streichsbier. 1990. Microbial degradation of xenobiotic compounds in soil columns. FEMS Microbiol. Ecol. 73:255–262.

    CAS  Google Scholar 

  • Podoll, R.T., H.M. Faber, and T. Mill. 1986. Tetrachlorodibenzodioxin: rates of volatilization and photolysis in the environment. Environ. Sci. Technol. 20:490–492.

    Article  CAS  Google Scholar 

  • Polnisch, E., H. Kneifel, H. Franzke, and K.H. Hofmann. 1992. Degradation and dehalogenation of monochlorophenols by the phenol-assimilating yeast Candida maltosa. Biodegradation 2:193–199.

    Article  CAS  Google Scholar 

  • Prucha, M., D. McKay, and K.N. Timmis. 1996. The role of three isoenzymes 1,2-dihydroxybiphenyl 1,2-dioxygenase of Rhodococcus globerulus P6 in the degradation of chlorinated biphenyls (PCBs). In: Proceedings of the UIB-GBF-CSIC-TUB symposium: Biodegradation of organic pollutants. Palma de Mallorca, 29 june-3 july, Mallorca, Spain.

    Google Scholar 

  • Puhakka, J.A., R.P. Herwig, P.M. Koro, G.V. Wolfe, and J.F. Ferguson. 1995. Biodegradation of chlorophenols by mixed and pure cultures from fluidized-bed reactor. Appl. Microbiol. B iotechnol . 42 : 951–957 .

    Article  CAS  Google Scholar 

  • Quensen, J.F., and F. Matsamura. 1983. Oxidative degradation of 2,3,7,8-tetrachlorodibenzop-dioxin by microorganisms. Environ. Toxicol. Chem. 2:261–268.

    CAS  Google Scholar 

  • Quensen III, J.F., S.A. Boyd, and J.M. Tiedje. 1990. Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl. Environ. Microbiol. 56:2360–2369.

    CAS  Google Scholar 

  • Radehaus, P.M., and S.K. Schmidt. 1992. Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Appl. Environ. Microbiol. 58:2879–2885.

    CAS  Google Scholar 

  • Ramanand, K., M.T. Balba, and J. Duffy. 1993. Reductive dehalogenation of chlorinated benzenes and toluenes under methanogenic conditions. Appl. Environ. Microbiol. 59:3266–3272.

    CAS  Google Scholar 

  • Ramanand, K., M.T. Balba, and J. Duffy. 1994. Anaerobic metabolism of chlorinated benzenes in soil under different redox potentials. In: Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds (Edited by R.E. Hinchee, A. Leeson, L. Semprini, and S. K. Ong). CRC Press, USA.

    Google Scholar 

  • Rapp, P., and K.N. Timmis. 1996. Degradation of 1,2,4,5-tetrachlorobenzene, 1,2,4-trichlorobenzene, the three isomeric dichlorobenzenes and fructose at nmolar concentrations by Burkholderia sp. PS14 in liquid cultures and in soil. In: Proceedings of the UIB-GBF-CSIC-TUB symposium: Biodegradation of organic pollutants. Palma de Mallorca, 29 june-3 july, Mallorca, Spain.

    Google Scholar 

  • Reineke, W., and H.J. Knackmuss. 1984. Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl. Environ. Microbiol. 47:395–402.

    CAS  Google Scholar 

  • Reineke, W. 1984. Microbial degradation of halogenated aromatic compounds. In: Microbial degradation of organic compounds (Edited by D.T. Gibson). Dekker, New York.

    Google Scholar 

  • Reineke, W., and H.J. Knackmuss. 1988. Microbial degradation of haloaromatics. Ann. Rev. Microbiol. 42 : 263–287 .

    Article  CAS  Google Scholar 

  • Reiner, E.A., J. Chu, and E.J. Kirsch. 1978. Microbial metabolism of pentachlorophenol. In: Pentachlorophenol: Chemistry, pharmacology, and environmental toxicology, p. 67–81 (Edited by K.R. Rao). Plenum Press, New York.

    Chapter  Google Scholar 

  • Renner, G., C. Hopfer, and J.M. Gokel. 1986. Acute toxicities of pentachlorophenol, pentachloroanisole, tetrachlorohydroquinone, tetrachlorocatechol, tetrachlororesorcinol, tetrachloromethoxybenzenes and tetrachlorobenzenediol diacetates administered to mice. Toxicol. Environ. Chem. 11:37–50

    Article  CAS  Google Scholar 

  • Resnick, S.M., and P.J. Chapman. 1994. Physiological properties and substrate specificity of a pentachlorophenol-degrading Pseudomonas species. Biodegradation 5:47–54.

    CAS  Google Scholar 

  • Rhee, G.-Y., R.C. Sokol, C.M. Bethoney, and B. Bush. 1993. Dechlorination of polychlorinated biphenyls by Hudson River sediment organisms: Specificity to the chlorination pattern of congeners. Environ. Sci. Technol. 27 :1190–1192 .

    Article  CAS  Google Scholar 

  • Robinson, K.G., and J.T. Novak. 1993. Fate of 2,4,6-trichloro-(14C)-phenol bound to dissolved humic acid. Wat Res. 28:445–452.

    Article  Google Scholar 

  • Rochkind-Dubinsky M.L., and G.S. Sayler. 1987. Microbiological decomposition of chlorinated aromatic compounds. Microbiology series volume 18. Dekker, New York, USA.

    Google Scholar 

  • Rojo, F., D.H. Pieper, K.-H. Engesser, H.-J. Knackmuss, and K.N. Timmis. 1987. Assemblage of ortho-cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238 :1395–1397.

    Article  CAS  Google Scholar 

  • Russel, S. 1978. Microbiological transformations in aniline and its chlorinated derivates. Zesz. Nauk. Szk. G1 Gospod. Wiejsk.-Akad. Roln. Warszawie, Rozpr. Nauk. 101, 33 pp. (abstract)

    Google Scholar 

  • Rutgers, M., J.J. Bogte, A. M. Breure, and J.G. van Andel. 1993. Growth and enrichment of pentachlorophenol-degrading microorganisms in the nutristat, a substrate concentrationcontrolled continuous culture. Appl. Environ. Microbiol. 59:3373–3377.

    CAS  Google Scholar 

  • Rutgers, M., D.D. Gooch, A.M. Breure, and J.G. van Andel. 1996. Assessment of inhibition kinetics of the growth of strain P5 on pentachlorophenol under steady-state conditions in a nutristat. Arch. Microbiol. 165:194–200.

    Article  CAS  Google Scholar 

  • Ryding, J.M., J.A. Puhakka, S.E. Strand, and J.F. Ferguson. 1994. Degradation of chlorinated phenols by a toluene enriched microbial culture. Water Res. 9:1897–1906.

    Article  Google Scholar 

  • Saber, D. I. , and R.L. Crawford. 1985. Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl. Environ. Microbiol. 50:1512–1518 .

    CAS  Google Scholar 

  • Sahm, H., M. Brunner, and S.M. Schoberth. 1986. Anaerobic degradation of halogenated aromatic compounds. Microb. Ecol. 12:147–153.

    Article  CAS  Google Scholar 

  • Salkinoja-Salonen, M., R. Valo, J. Apajalathi, R. Hakulinen, L. Silakoski, and T. Jaakkola. 1984. In: Current perspectives in microbial ecology. Ed. M. Klug and C.A. Reddy. American Society for Microbiology, Washington DC.

    Google Scholar 

  • Salkinoja-Salonen, M. 1995. Microbes for clean-up. In: Environmental research in Finland today (Edited by E. Saski, and T. Saarinen). Proceedings of the second Finnish conference of environmental sciences. Hakapaino Oy, Helsinki, Finland.

    Google Scholar 

  • Salkinoja-Salonen, M. 1996. Microbes for clean-up: who are they? In: Proceedings of the UIBGBF-CSIC-TUB symposium: Biodegradation of organic pollutants. Palma de Mallorca, 29 june-3 july, Mallorca, Spain.

    Google Scholar 

  • Sander, P., R.-M. Wittich, P. Fortnagel, H. Wilkes, and W. Francke. 1991. Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene by Pseudomonas strains. Appl. Environ. Microbiol. 57:1430–1440.

    CAS  Google Scholar 

  • Schenk, T., R. Muller, F. Morsberger, M.K. Otto, and F. Lingens. 1989. Enzymatic dehalogenation of pentachlorophenol by extracts from Arthrobacter sp. strain ATCC 33790. J. Bacteriol. 171:5487–5491.

    CAS  Google Scholar 

  • Schwien, U., and E. Schmidt. 1982. Improved degradation of monochlorophenols by a constructed strain. Appl. Environ. Microbiol. 44:33–39.

    CAS  Google Scholar 

  • Schmidt, E., M. Hellwig, and H.J. Knackmuss. 1983. Degradation of chlorophenols by a defined mixed microbial community. Appl. Environ. Microbiol. 46:1038–1044.

    CAS  Google Scholar 

  • Schmidt, F. 1985. Verfahren zur biologischen abluftreinigung. Ger. Offe. DE 3326057 Al, 31 Jan 1985, 13 pp.

    Google Scholar 

  • Schraa, G., M.L. Boone, M.S.M. Jetten, A.R.W. van Neerven, P.J. Colberg, and A.J.B. Zehnder. 1986. Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl . Environ. Microbiol . 52:1347- 1381.

    Google Scholar 

  • Schraa, G. 1987. Inventarisatie van relevante microbiologische omzettingen en micro-organismen. Literatuuronderzoek uitgevoerd in het kader van het project ontwikkeling bioreactoren voor reiniging van grondwater, door DHV en LU Wageningen uitgevoerd in opdracht van het ministerie van VROM.

    Google Scholar 

  • Seech, A.G., I.J. Marvan, and J.T. Trevors. 1994. On-site/ex situ bioremediation of industrial soils containing chlorinated phenols and polycyclic aromatic hydrocarbons. In: Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds (Edited by R.E. Hinchee, A. Leeson, L. Semprini, and S. K. Ong). Proceedings of the second international in situ and on-site bioreclamation symposium (San Diego, USA). CRC Press, USA.

    Google Scholar 

  • Seeger, M., K.N. Timmis, and B. Hofer. 1995. Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Appl. Environ. M icrobiol. 61: 2654–2658.

    CAS  Google Scholar 

  • Seto, M., K. Kimbara, M. Shimura, T. Hatta, M. Fukuda, and K. Yano. 1995. A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA 1. Appl . Environ. Microbiol. 61:3353–3358.

    CAS  Google Scholar 

  • Sharpee, K. W. , J.M. Duxbury, and M. Alexander. 1973. 2,4- Dichlorophenoxyacetate metabolism by Arthrobacter sp.: accumulation of a chlorobutenolide. Appl. Microbiol. 26:445–447.

    CAS  Google Scholar 

  • Shelton, D.R., and J.M. Tiedje. 1984. Isolation and partial characterization of bacteria in an aerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48:840–848.

    CAS  Google Scholar 

  • Siahpush, A. R. , J.-E . Lin, and H.Y. Wang. 1992. Effect of adsorbents on degradation of toxic organic compounds by coimmobilized systems. Biotechnol. Bioeng. 39:619–628.

    Article  CAS  Google Scholar 

  • Siuda, J.F. 1980. Natural production of organohalogens. In:Water chlorination: Environmental impact and health effects (Edited by: R.L. Jolley, W.A. Brungs, R.B. Cumming, and V.A. Jacobs) Ann Arbor, Michigan, Ann Arbor Science Publishers Inc., Vol. 3, pp. 63–72.

    Google Scholar 

  • Sokol, R. C., O.-S. Kwon, C. M. Bethoney, and G.-Y . Rhee. 1994. Reductive dechlorination of polychlorinated biphenyls in St. Lawrence River sediments and variations in dechlorination characteristics. Environ. Sci. Technol. 28:2054–2064.

    Article  CAS  Google Scholar 

  • Sokol, R.C., C.M. Bethoney, and G.-Y. Rhee. 1995. Effect of PCB concentration on reductive dechlorination and dechlorination potential in natural sediments. Water Res. 29:45–48.

    Article  CAS  Google Scholar 

  • Sondossi, M., M. Sylvestre, D. Ahmad, and R. Massé. 1991. Metabolism of hydroxybiphenyl and chlorobiphenyl by biphenyl/chlorobiphenyl-degrading Ps. testosteroni strain B-356. J. Ind. Microbiol. 7:77–88.

    Article  CAS  Google Scholar 

  • Sondossi, M., M. Sylvestre, and D. Ahmad. 1992. Effects of chlorobenzoate transformation on the Pseudomonas testosteroni strain biphenyl and chlorobiphenyl degradation pathway. Appl. Environ. Microbiol. 58:485–495.

    Google Scholar 

  • Spain, J. C., and S.F. Nishino. 1987. Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol. 53:1010–1019.

    CAS  Google Scholar 

  • Spain, J. C., and D. T. Gibson. 1988. Oxidation of substituted phenols by Pseudomonas putida F 1 and Pseudomonas sp. strain JS6. Appl. Environ. Microbiol. 54:1399–1404.

    CAS  Google Scholar 

  • Spiess, E., C. Sommer, and H. Görisch. 1995. Degradation of 1,4-dichlorobenzene by Xanthobacter flavus 14p 1. Appl. Environ. Microbiol. 61:3884–3888.

    CAS  Google Scholar 

  • Stanlake, G.J., and R.K. Finn. 1982. Isolation and characterization of a pentachlorophenoldegrading bacterium. Appl . Environ. Microbiol. 44:1421–1427.

    CAS  Google Scholar 

  • Steiert, J.G., and R.L. Crawford. 1985. Microbial degradation of chlorinated phenols. Trends in B iotechnol. 3 : 300–305 .

    Article  CAS  Google Scholar 

  • Steiert, J.G., and R.L. Crawford. 1986. Catabolism of pentachlorophenol by a Flavobacterium sp. Biochem. Biophys. Res. Commun. 141:825–830.

    Article  CAS  Google Scholar 

  • Steiert, J.G., J.J. Pignatello, and R.L. Crawford. 1987. Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol. 53:907–910.

    CAS  Google Scholar 

  • Stockinger, J., C. Hinteregger, M. Loidl, A. Ferschl, and F. Streichsbier. 1992. Mineralization of 3-chloro-4-methylaniline via an ortho-cleavage pathway by Pseudomonas cepacia strain CMA1. Appl. Microbiol. Biotechnol. 38:421–428.

    Article  CAS  Google Scholar 

  • Stormo, K. E. , and R.L. Crawford. 1994. Pentachlorophenol degradation by microencapsulated flavobacteria and their enhanced survival for in situ aquifer bioremediation. In: Applied biotechnology for site remediation (Edited by R.E. Hinchee, D.B. Anderson, F. Blaine Metting (jr.), and G.D. Sayles). CRC Press, USA.

    Google Scholar 

  • Streber, W.R., T.N. Timmis, and M.H. Zenk. 1987. Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. J. Bacteriol. 169:2950–2955.

    CAS  Google Scholar 

  • Strubel, V., H. G. Rast, W. Fietz, H.-J . Knackmuss, and K. -H . Engesser. 1991. 3-(2-Hydroxyphenyl)catechol as substrate for proximal meta-ring cleavage in dibenzofuran degradation by Brevibacterium sp. strain DP01361. J. Bacteriol. 173:1932–1937.

    CAS  Google Scholar 

  • Struijs, J., and J.E. Rogers. 1989. Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediment. Appl. Environ. Microbiol . 55 : 2527–2531.

    CAS  Google Scholar 

  • Stucki, G. , A. Goy, R. Schmuckli, and P. Cedraschi. 1995. Biologische Reinigung von Abluft aus der chemischen Industrie. Staub-Reinhaltung der Luft 55:53–57.

    CAS  Google Scholar 

  • Suflita, J.M., J.A. Robinson, and J.M. Tiedje. 1983. Kinetics of microbial dehalogenation of haloaromatic substrates in methanogenic environments. Appl. Environ. Microbiol. 45 :1466–1473 .

    CAS  Google Scholar 

  • Sullivan, J.P., and H.A. Chase. 1996. 1,2,3-Trichlorobenzene transformation by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Microbiol. Biotechnol . 45 :427–433 .

    Article  CAS  Google Scholar 

  • Surovtseva, E. G., G.K. Vasil’eva, A. I. Vol’nova, and B.P. Baskunov. 1981. Degradation of monochloroanilines via the meta pathway by Alcaligenes faecalis. Proc. Acad. Sci. USSR 254:487–490.

    Google Scholar 

  • Surovtseva, E.G., A.I. Vol’nova, and G.K. Vasil’eva. 1983. Microbial degradation of chlorinated anilines. Tr. Vses. Nauchno-Issled. Inst. S-kh. Mikrobiol. 52:50–53.

    CAS  Google Scholar 

  • Surovtseva, E. G., V. S. Ivoilov, Y.N. Karasevich, and G.K. Vasil’ eva. 1985. Chlorinated anilines as a source of carbon, nitrogen and energy for Pseudomonas diminuta. Mikrobiologya 54:948–952.

    CAS  Google Scholar 

  • Surovtseva, E.G., V.S. Ivoilov, and Y.N. Karasevich. 1986. Metabolism of chlorinated anilines in Pseudomonas diminuta. Mikrobiologiya 55:591–595.

    CAS  Google Scholar 

  • Süss, A., G. Fuchsbichler, and C. Eben. 1978. Degradation of aniline, 4-chloroaniline and 3,4–dichloroaniline in various soils. Z. Pflanzernähr. Bodenkd. 141:57–66.

    Article  Google Scholar 

  • Suzuki, T. 1983. Metabolism of pentachlorophenol (PCP) by soil microorganisms. Nippon Noyaku Gakkaishi 8:385–394.

    CAS  Google Scholar 

  • Sylvestre, M., and J. Fauteux. 1982. A new facultative anaerobe capable of growth on chlorobiphenyls. J. Gen. Appl. Microbiol. 28:61- 72.

    Article  CAS  Google Scholar 

  • Sylvestre, M., R. Massé, F. Messier, J. Fauteux, J.-G. Bisaillon, and R. Beaudet. 1982. Bacterial nitration of 4-chlorobiphenyl. Appl. Environ. Microbiol. 44:871–877.

    CAS  Google Scholar 

  • Sylvestre, M., R. Masse, C. Ayotte, F. Messier, and J. Fauteux. 1985. Total biodegradation of 4-chlorobiphenyl (4CB) by a two-membered bacterial culture. Appl. Microbiol. Biotechnol. 21:192–195.

    Article  CAS  Google Scholar 

  • Tahara, S., Z. Hafsah, and A. Ono. 1981. Metabolites of 2,4-dichloro-l-nitrobenzene by Mucor javanicus. Agric. Biol. Chem. 45:2253–2258.

    Article  CAS  Google Scholar 

  • Takase, I. , T. Omori, and Y. Minoda. 1986. Microbial degradation products from biphenylrelated compounds. Agric. Biol. Chem. 50:681- 686.

    Article  CAS  Google Scholar 

  • Thiele, J. , R. Müller, and F. Lingens. 1988. Enzymatic dehalogenation of chlorinated nitroaromatic compounds. Appl. Environ. Microbiol. 54:1199–1202.

    CAS  Google Scholar 

  • Thomas, D.R., K.S. Carswell, and G. Georgiou. 1992. Mineralization of biphenyl and PCBs by the white rot fungus Phanerochaete chrysosporium. Biotechnol. Bioeng. 40:1395–1402.

    Article  CAS  Google Scholar 

  • Thüer, M., G. Stucki, and M. Reisinger. 1993. Gentle washing for contaminated groundwater: Innovative and cost effective solutions for groundwater treatment. Ciba Engineering and process technology, Schweizerhalle, Switzerland.

    Google Scholar 

  • Tiedje, J.M., S.A. Boyd, and B.Z. Fathepure. 1987. Anaerobic degradation of chlorinated aromatic hydrocarbons. Dev. Ind. Microbiol. 27 :117–127.

    CAS  Google Scholar 

  • Tiedje, J.M., J.F. Quensen III, J. Chee-Sanford, J.P. Schimel, and S.A. Boyd. 1993. Microbial reductive dechlorination of PCBs. Biodegradation 4:231–240.

    Article  CAS  Google Scholar 

  • Topp, E., and R.S. Hanson. 1990. Degradation of pentachlorophenol by a Flavobacterium species grown in continuous culture under various nutrient limitations. Appl. Environ. Microbiol. 56:541–5444.

    CAS  Google Scholar 

  • Tucker, E. S., V.W. Seager, and O. Hicks. 1975. Activated sludge primary biodegradation of polychlorinated biphenyls. Bull. Environ. Contam. Toxicol. 14:705–713.

    Article  CAS  Google Scholar 

  • Tyler, J.E., and R.K. Finn. 1974. Growth rates of a Pseudomonad on 2,4- dichlorophenoxyacetic acid and 2,4-dichlorophenol. Appl. Microbiol. 28 :181–184.

    CAS  Google Scholar 

  • Unterman, R., D.L. Bedard, M.J. Brennan, L.H. Bopp, F.J. Mondello, R.E. Brooks, D.P. Mobley, J. B. McDermott, C. C. Schwartz, and D.K. Dietrich. 1988. Biological approaches for polychlorinated biphenyl degradation. Basic Life Sciences 45:253–269.

    CAS  Google Scholar 

  • Uotila, J.S., M.S. Salkinoja-Salonen, and J.H.A. Apajalahti. 1991. Dechlorination of pentachlorophenol by membrane bound enzymes of Rhodococcus chlorophenolicus PCP-1. Biodegradation 2:25–31.

    Article  CAS  Google Scholar 

  • Utkin, I., C. Woese, and J. Wiegel. 1994. Isolation and characterization of Desulfitobacterium dehalogenans gen. nov ., sp. nov ., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int. J. Syst. Bacteriol. 44:612–619.

    Article  CAS  Google Scholar 

  • Utkin, I., D.D. Dalton, and J. Wiegel. 1995. Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC 1. Appl. Environ. Microbiol. 61:346–351.

    CAS  Google Scholar 

  • Valli, K., and M.H. Gold. 1991. Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. J. Bacteriol. 173:345–352.

    CAS  Google Scholar 

  • Valli, K., H. Wariishi, and M.H. Gold. 1992. Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J. Bacteriol. 174:2131–2137.

    CAS  Google Scholar 

  • Valo, R.J., and M.S. Salkinoja-Salonen. 1986. Bioreclamation of chlorophenol-contaminated soil by composting. Appl. Microbiol. Biotechnol. 25:68–75.

    Article  CAS  Google Scholar 

  • Valo, R.J., M.M. Häggblom, and M.S. Salkinoja-Salonen. 1990. Bioremediation of chlorophenol containing simulated groundwater by immobilized bacteria. Water Res. 24:253–258.

    Article  CAS  Google Scholar 

  • Vandenbergh, P.A., R.H. Olsen, and J.F. Colaruotolo. 1981. Isolation and genetic characterization of bacteria that degrade chloroaromatic compounds. Appl. Environ. Microbiol. 42:737–739.

    CAS  Google Scholar 

  • van Dort, H.M., and D.L. Bedard. 1991. Reductive ortho and meta dechlorination of a polychlorinated biphenyl congener by anaerobic microorganisms. Appl. Environ. Microbiol. 57 :1576–1578 .

    Google Scholar 

  • Vasil’eva, G.K., and N.D. Anan’eva. 1983. Biodegradation of 3,4- dichloroaniline in the soil. Tr. Vses. Nauchno-Issled. Inst. S-kh. Mikrobiol. 52:53–56. (abstract).

    Google Scholar 

  • Voelskow, H. 1984. Bakterienkulturen zum Abbau substituierter Aromaten. Vom Wasser 63:87–92.

    CAS  Google Scholar 

  • Voelskow, H., F. Lingens, A. Bauer, R. Keller, and U. Faust. 1985. Bacterial cultures and their use in degrading hard-to-degrade aromatic compounds. Ger. Offen. DE 3417443 Al, 14 nov. 1985, 14 pp. (patent).

    Google Scholar 

  • VROM. 1994. Herziening van de lijst met prioritaire stoffen. Publicatiereeks stoffen, veiligheid, straling (nr. 1994/16). VROM, Zoetemeer, The Netherlands.

    Google Scholar 

  • Wada, S., H. Ichikawa, and K. Tatsumi. 1995. Removal of phenols and aromatic amines from waste water by a combination treatment with tyrosinase and a coagulant. Biotechnol. Bioeng. 45:304–309.

    Article  CAS  Google Scholar 

  • Walker, N., and G.H. Wiltshire. 1955. The decomposition of 1-chloro- and 1-bromonaphthalene by soil bacteria. J. Gen. Microbiol. 12:478–483.

    CAS  Google Scholar 

  • Walker, N. 1973. Metabolism of chlorophenols by Rhodotorula glutinis. Soil. Biol. Biochem. 5:525–530

    Article  CAS  Google Scholar 

  • Watanabe, I. 1973. Isolation of pentachlorophenol decomposing bacteria from soil. Soil Sci. Plant Nutr. (Tokyo) 19:109–116.

    Article  CAS  Google Scholar 

  • Wellens, H. 1990. Zur biologischen Abbaubarkeit mono- und disubstituierter Benzolderivate. Z. Wasser-Abwasser-Forsch. 23 : 85–89 .

    CAS  Google Scholar 

  • Wilkes, H., R.-M. Wittich, K.N. Timmis, P. Fortnagel, and W. Francke. 1996. Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RW1. Appl. Environ. Microbiol. 62:367–371.

    CAS  Google Scholar 

  • Williams, W.A. 1994. Microbial reductive dechlorination of trichlorobiphenyls in anaerobic sediment slurries. Environ. Sci. Technol. 28:630–635.

    Article  CAS  Google Scholar 

  • Wittich, R.-M., H. Wilkes, V. Sinnwell, W. Francke, and P. Fortnagel. 1992. Metabolism of dibenzo-p-dioxin by Sphingomonas sp. strain RW 1. Appl . Environ. Microbiol . 58 : 1005–1010.

    CAS  Google Scholar 

  • Wittich, R.-M. 1992. Aerobic and anaerobic degradation and transformation/dehalogenation of low-chlorinated dibenzofurans and dibenzo-p-dioxins. In: Soil decontamination using biological processes. Schön and Wetzel, Germany.

    Google Scholar 

  • World Health Organization. 1987. Pentachlorophenol . Environmental Health Criteria 71, World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • World Health Organization. 1989a. Polychlorinated dibenzo-para-dioxins and dibenzofurans. Environmental Health Criteria 88, World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • World Health Organization. 1989b. Chlorophenols other than pentachlorophenols. Environmental Health Criteria 93, World Health Organization, Switzerland.

    Google Scholar 

  • World Health Organization. 1991. Chlorobenzenes other than hexachlorobenzene. Environmental Health Criteria 128, World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • World Health Organization. 1993. Polychlorinated biphenyls and terphenyls. Environmental Health Criteria 140 (second edition), World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • Wu, W.-M., L. Bhatnagar, and J.G. Zeikus. 1993. Performance of anaerobic granules for degradation of pentachlorophenol. Appl. Environ. Microbiol. 59:389–397.

    CAS  Google Scholar 

  • Yadav, J. S., J.F. Quensen III, J.M. Tiedje, and C. A. Reddy. 1995a. Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Appl. Environ. Microbiol. 61: 2560–2565 .

    CAS  Google Scholar 

  • Yadav, J.S., R.E. Wallace, and C.A. Reddy. 1995b. Mineralization of mono- and dichlorobenzenes and simultaneous degradation of chloro- and methyl-substituted benzenes by the white rot fungus Phanerochaete chtysosporium. Appl. Environ. Microbiol. 61:677–680.

    CAS  Google Scholar 

  • Ye, D., J.F. Quensen III, J.M. Tiedje, and S.A. Boyd. 1992. Anaerobic dechlorination of polychlorobiphenyls (Aroclor 1242) by pasteurized and ethanol-treated microorganisms from sediments. Appl. Environ. Microbiol. 58:1110–1114.

    Google Scholar 

  • You, I.S., and R. Bartha. 1982. Stimulation of 3,4-dichloroaniline mineralization by aniline. Appl. Environ. Microbiol. 44:678–681.

    CAS  Google Scholar 

  • Zaitsev, G.M., I.V. Tsitko, J.S. Uotila, and M.S. Salkinoja-Salonen. 1995. Initial steps in the metabolism of mono- and dichlorinated benzenes and phenols by Rhodococcus opacus GM 14. In: Environmental research in Finland today (Edited by E. Saski, and T. Saarinen). Proceedings of the second Finnish conference of environmental sciences. Hakapaino Oy, Helsinki, Finland.

    Google Scholar 

  • Zeddel, A., A. Majcherczyk, and A. Hüttermann. 1993. Degradation of polychlorinated biphenyls by white rot fungi Pleurotus ostreatus and Trametes versicolor in solid state system. Toxicol. Environ. Chem. 40:255–266.

    Article  CAS  Google Scholar 

  • Zeddel, A., A. Majcherczyk, and A. Hüttermann. 1994. Degradation and mineralization of polychlorinated biphenyls by white rot fungi in solid-phase and soil incubation experiments. In: Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds (Edited by R.E. Hinchee, A. Leeson, L. Semprini, and S.K. Ong). CRC Press, Lewis Publishers, USA.

    Google Scholar 

  • Zeyer, J., and P.C. Kearney. 1982. Microbial degradation of para-chloroaniline as sole carbon and nitrogen source. Pest. Biochem. Physiol. 17:215–223.

    Article  CAS  Google Scholar 

  • Zeyer, J., A. Wasserfallen, and K.N. Timmis. 1985. Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl. Environ. Microbiol. 50:447–453.

    CAS  Google Scholar 

  • Zhang, X., and J. Wiegel. 1990. Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl. Environ. Microbiol. 56:1119–1127.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Agteren, M.H., Keuning, S., Janssen, D.B. (1998). Chlorinated aromatic compounds. In: Handbook on Biodegradation and Biological Treatment of Hazardous Organic Compounds. Environment & Chemistry, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9062-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9062-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5010-6

  • Online ISBN: 978-94-015-9062-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics