Skip to main content

Part of the book series: Environment & Chemistry ((ENVC,volume 2))

  • 331 Accesses

Abstract

Acrolein is a volatile and highly flammable liquid with a pungent odor. It is used as an intermediate in the synthesis of numerous chemicals, in particular acrylic acid and its lower alkyl esters, and DL-methione, an essential amino acid used as a feed supplement for poultry and cattle. Acrolein can also be used as a biocide, although that is prohibited in some countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, F.B., L.E. Craker, L.E. Forrence, and G.R. Leather. 1971. Fate of air pollutants: Removal of ethylene, sulfur dioxide, and nitrogen dioxide by soil. Science 173:914–916.

    Article  CAS  Google Scholar 

  • Adroer, N., C. Casas, C. de Maas, and C. Solà. 1990. Mechanism of formaldehyde biodegradation by Pseudomonas putida. Appl. Microbiol. Biotechnol. 33:217–220.

    Article  CAS  Google Scholar 

  • Aelion, C.M., and P.M. Bradley. 1991. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer. Appl. Environ. Microbiol. 57:57–63.

    CAS  Google Scholar 

  • Al-Awadhi, N., T. Egli, G. Hamer, and C.A. Mason. 1990. The process utility of thermotolerant methylotrophic bacteria: II. An evaluation of transient responses. Biotechnol. Bioeng. 36:821–825.

    Article  CAS  Google Scholar 

  • Allen, J. R., and S. A. Ensign. 1996. Carboxylation of epoxides to β-keto acids in cell extracts of Xanthobacter strain Py2. J. Bacteriol. 178:1469–1472.

    CAS  Google Scholar 

  • Anthony, C. 1982. The biochemistry of methylotrophs. Academic Press, London, UK.

    Google Scholar 

  • Arfman, N., K.J. de Vries, H.R. Moezelaar, M.M. Attwood, G.K. Robinson, M. van Geel, and L. Dijkhuizen. 1992. Environmental regulation of alcohol metabolism in thermotolerant methylotrophic Bacillus strains. Arch. Microbiol. 157:272–278.

    Article  CAS  Google Scholar 

  • Arnaud, A., P. Galzy, and J.C. Jallegeas. 1977. Etude de l’acetonitrilase d’une souche de Brevibacterium. Agric. Biol. Chem. 41:2183–2191.

    Article  CAS  Google Scholar 

  • Arshad, M., and W.T. Frankenberger. 1990. Production and stability of ethylene in soil. Biol. Fertil. Soils 10:29–34.

    CAS  Google Scholar 

  • Asano, Y., K. Fujishiro, Y. Tani, and H. Yanade. 1982. Aliphatic nitrile hydratase from Arthrobacter sp. J-1. Purification and characterization. Agric. Biol. Chem. 46:1165–1174.

    Article  CAS  Google Scholar 

  • Atkinson, R., S.M. Aschmann, A.M. Winer, and J.N. Pitts. 1981. Rate constants for the gasphase reactions of O3 with a series of carbonyls at 296 K. Int. J. Kinet. 13:1133–1150.

    Article  CAS  Google Scholar 

  • Atkinson, R., S. M. Aschmann, and M. A. Goodman. 1987. Kinetics of the gas-phase reactions of NO3 with a series of alkynes, haloalkenes, α,β-unsaturated aldehydes. Int. J. Kinet. 19:299–307.

    Article  CAS  Google Scholar 

  • Atlas, R.M. 1977. Stimulated petroleum degradation. Crit. Rev. Microbiol. 5:371–386.

    Article  CAS  Google Scholar 

  • Atlas, R.M. 1981. Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol. Rev. 45:180–209.

    CAS  Google Scholar 

  • Atlas, R.M. 1984. Petroleum Microbiology. MacMillan Publ. Comp., New York, USA.

    Google Scholar 

  • Attwood, M.M., and J.R. Quayle. 1984. Formaldehyde as a central intermediary metabolite ot methylotrophic metabolism. In: Microbial growth on Cl compounds. Proceedings of the 4th International Symposium (Edited by R.L. Crawford and R.S. Hanson). ASM, Washington DC, USA.

    Google Scholar 

  • Ayanaba, A., W. Verstraete, and M. Alexander. 1973. Formation of dimethylnitrosamine, a carcinogen and mutagen, in soils treated with nitrogen compounds. Soil Sci. Soc. Am. Proc. 37:565–568.

    Article  CAS  Google Scholar 

  • Bailey, N.J.L., A.M. Jobson, and M.A. Rogers. 1973. Bacterial degradation of crude oil: Comparison of field and experimental data. Chem. Geol. 11:203–221.

    Article  CAS  Google Scholar 

  • Bhattacharya, S.K., and G.F. Parkin. 1988. Fate and effect of methylene chloride and formaldehyde in methane fermentation systems. J. Water Pollut. Control Fed. 60:531–536.

    CAS  Google Scholar 

  • Behrens, U., and J. Hannes. 1984. Degradation of formaldehyde by adapted bacteria. Acta Hydrochim. Hydrobiol. 12:39–45.

    Article  CAS  Google Scholar 

  • Behrens, U., J. Hannes, G. Martius, M. Hohlfeld, and W. Lange. 1985. Microbial removal of formaldehyde from waste water. Patent Ger. (East) DD 217199 A1, 9 Jan. 1985, 7 p.

    Google Scholar 

  • Benner B.A., N.P. Bryner, M.F. Fingas, R.C. Lao, S.A. Wiseana, G. W. Mulnolland. 1990. Polycyclic aromatic hydrocarbon emissions from the combustion of crude oil on water. Environ. Sci. Technol. 24:1418–1427.

    Article  CAS  Google Scholar 

  • Bost, J. 1980. Matières Plastiques-Chimie-Applications. Technique et Documentation. Paris, France.

    Google Scholar 

  • Bowmer, K.H., and M.L. Higgins. 1976. Some aspects of the persistence and fate of acrolein herbicide in water. Arch. Environ. Contam. Toxicol. 5:87–96.

    Article  CAS  Google Scholar 

  • Braun-Lüllemann, A., C. Johannes, A. Majcherczyk, and A. Hüttermann. 1995. The use of whiterot fungi as active biofilters. In: Biological unit processes for hazardous waste treatment (Edited by R.E. Hinchee, G.D. Sayles, R.S. Skeen). Book 3(9) of the Third International in situ and on-site Bioreclamation Symposium, San Diego, USA. Battelle Press, Columbus, USA.

    Google Scholar 

  • Christoserdova, L. 1995. Metabolism of formaldehyde in Methylobacterium extorquens AM 1. In: Speaker abstracts of the 8t1h International Symposium on microbial growth on C1 compounds, San Diego, California, USA.

    Google Scholar 

  • Choudary, P.V., and R.G. Rao. 1984. Molecular analysis of inorganic nitrogen assimilation in yeasts. Arch. Microbiol 138:183–186

    Article  CAS  Google Scholar 

  • Claus, G., and H.J. Kutzner. 1981. Microbial degradation of odorous substances from waste air streams. Landwirtsch. Forsch. Sonderh., vol. date 1980, 37:541–550. (Dub. 1981).

    Google Scholar 

  • Colby, J., and L.J. Zatman. 1973. Trimethylamine metabolism in obligate and facultative methylotrophs. Biochem. J. 132:101–112.

    CAS  Google Scholar 

  • Colby, J., and L.J. Zatman. 1975. Tricarboxylic acid-cycle and related enzymes in restrictive facultative methylotrophs. Biochem. J. 148:505–511.

    CAS  Google Scholar 

  • Collins, P. A., and C.J. Knowles. 1983. The utilization of nitriles and amides by Nocardia rhodochrous. J. Gen. Microbiol. 129:711–718.

    CAS  Google Scholar 

  • de Bont, J.A.M., and W. Harder. 1978. Metabolism of ethylene by Mycobacterium E20. FEMS Microbiol. Lett. 3:89–93.

    Article  Google Scholar 

  • de Bont, J. A. M., M. M. Attwood, S.B. Primrose, and W. Harder. 1979. Epoxidation of short chain alkenes in Mycobacterium E20: The involvement of a specific monooxygenase. FEMS Microbiol. Lett. 6:183–188.

    Article  Google Scholar 

  • de Bont, J. A. M., S. B. Primrose, M.D. Collins, and D. Jones. 1980. Chemical studies on some bacteria which utilize gaseous unsaturated hydrocarbons. J. Gen. Microbiol. 117:97–102.

    Google Scholar 

  • de Bont, J.A.M., J.P. van Dijken, and C.G. van Ginkel. 1982. The metabolism of 1,2-propanediol by the propylene oxide utilizing bacterium Nocardia A60. Biochim. Biophys. Acta 714:465–470.

    Article  Google Scholar 

  • de Bont, J.A.M., C.G. van Ginkel, J. Tramper, and K.C.A.M. Luyben. 1983. Ethylene oxide production by immobilized Mycobacterium Pyl in a gas/solid bioreactor. Enzyme Microbiol. Technol. 5:55–60.

    Article  Google Scholar 

  • de Bont, J.A.M. 1993. Bioformation of optically pure epoxides. Tetrahedron Asymmetry 4:1331–1340.

    Article  Google Scholar 

  • de Bruin, W. P., M. J. J. Kotterman, M. A. Posthumus, G. Schraa, and A. J. B. Zehnder. 1992. Complete biological reductive transformation of tetrachloroethene to ethane. Appl. Environ. Microbiol. 58:1996–2000.

    Google Scholar 

  • de Haan, A., M. R. Smith, W. G. B. Voorhorst, and J. A. M. de Bont. 1993. Co-factor regeneration in the production of 1,2-epoxypropane by Mycobacterium strain E3: The role of storage material. J. Gen. Microbiol. 139:3017–3022.

    Google Scholar 

  • de Heyder, B., E. Smet, W. Verstraete, and H. van Langenhove. 1992. Biotechnological removal of ethene from waste gases. In: Biotechniques for air pollution abatement and odour control policies (Edited by A.J. Dragt and J. van Ham). Elsevier Science Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  • de Heyder, B., A. Overmeire, H. van Langenhove, and W. Verstraete. 1994. Ethene removal from a synthetic waste gas using a dry biobed. Biotechnol. Bioeng. 44:642–648.

    Article  Google Scholar 

  • Dibble, J.T., and R. Bartha. 1979a. Leaching aspects of oil sludge biodegradation in soil. Soil Science 127:365–370.

    Article  CAS  Google Scholar 

  • Dibble, J.T., and R. Bartha. 1979b. Effect of environmental parameters on the biodegradation of oil sludge. Appl. Environ. Microbiol. 37:729–739.

    CAS  Google Scholar 

  • DiGeronimo, M. J., and A. D. Antoine. 1976. Metabolism of acetonitrile and propionitrile by Nocardia rhodochrous LL 100–21. Appl. Environ. Microbiol. 31:900–906.

    CAS  Google Scholar 

  • Dijkhuizen, L., P.R. Levering, and G.E. de Vries. 1992. The physiology and biochemistry of aerobic methanol-utilizing gram-negative and gram-positive bacteria. In: Methane and methanol utilizers (Edited by J.C. Murrell and H. Dalton), Volume 5 of Biotechnology Handbooks (Edited by T. Atkinson and R. F. Sherwood), Plenum Press, New York, USA.

    Google Scholar 

  • Donberg, P. A., D. A. Odelson, G.M. Klecka, and D. A. Markham. 1992. Biodegradation of acrylonitrile in soil. Environ. Toxicol. Chem. 11:1583–1594.

    Article  CAS  Google Scholar 

  • Edney, E.O., P.B. Shepson, T.E. Kleindienst, and E.W. Corse. 1986. The photooxidation of allyl chloride. Int. J. Chem. Kinet. 18:597–608.

    Article  CAS  Google Scholar 

  • Eikelboom, D. H. 1985. In situ biorestauratie van een met olieproducten verontreinigcle ondergrond. Een literatuurstudie. Rapport nr R85/320, TNO, Den Haag, The Netherlands.

    Google Scholar 

  • Farmwald, J. A., and M. G. McNaughton. 1981. Effects of hydrazine on the activated sludge process. J. Water Pollut. Control Fed. 53:565–575.

    CAS  Google Scholar 

  • Finnegan, I., S. Toerien, L. Abbot, F. Smit, and H.G. Raubenheimer. 1991. Identification and characterization of an Acinetobacter sp. capable of assimilation of a range of cyano-metal complexes, free cyanide ions and simple organic nitriles. Appl. Microbiol. Biotechnol. 36:142–144.

    Article  CAS  Google Scholar 

  • Foght, J.M., and D.W.S. Westlake. 1988. Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can. J. Microbiol. 34:1135–1141.

    Article  CAS  Google Scholar 

  • Foght, J. M., D. L. Gutnick, and D. W. S. Westlake. 1988. Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures. Appl. Environ. Microbiol. 55:36–42.

    Google Scholar 

  • Geigert, J., S.L. Neidleman, D.J. Dalietos, and S.K. DeWitt. 1983. Haloperoxidases: Enzymatic synthesis of a.β-halohydrins from gaseous alkenes. Appl. Environ. Microbiol. 45:366–374.

    CAS  Google Scholar 

  • Geigert, J., T.D. Lee, D.J. Dalietos, D.S. Hirano, and S.L. Neidleman. 1986. Epoxidation of alkenes by chloroperoxidase catalysis. Biochem. Biophys. Res. Comm. 136:778–782.

    Article  CAS  Google Scholar 

  • Genouw, G., F. de Naeyer, P. van Meenen, H. van de Werf, W. de Nijs, and W. Verstraete. 1994. Degradation of oil sludge by landfarming — a case study at the Ghent harbor. Biodegradation 5:37–46.

    CAS  Google Scholar 

  • Gerike, P., and P. Gode. 1990. The biodegradability and inhibitory threshold concentration of some disinfectants. Chemosphere 21:799–812.

    Article  CAS  Google Scholar 

  • Ghisalba, O., and M. Kuenzi. 1983. Biodegradation of quaternary alkylammonium compounds by specialized methylotrophs. Experientia 39:1264–1271.

    Article  CAS  Google Scholar 

  • Ghisalba, O., P. Cevey, M. Kuenzi, and H.P. Schar. 1985. Biodegradation of chemical waste by specialized methylotrophs, an alternative to physical methods of waste disposal. Conserv. Recycl. 8:47–71.

    Article  CAS  Google Scholar 

  • Grover, K., and A.E. Smith. 1974. Adsorption studies with acid and dimethylamine forms of 2,4–D and dicamba. Can. J. Soil Sci. 54:179–186.

    Article  CAS  Google Scholar 

  • Habets-Crützen, A.Q.H., L.E.S. Brink, C.G. van Ginkel, J.A.M. de Bont, and J. Tramper. 1984. Production of epoxides from gaseous alkenes by resting cell suspensions and immobilized cells of alkene-utilizing bacteria. Appl. Microbiol. Biotechnol. 20:245–250.

    Article  Google Scholar 

  • Habets-Crützen, A. Q. H., and J. A. M. de Bont. 1985. Inactivation of alkene oxidation by epoxides in alkene and alkane-grown cells. Appl. Microbiol. Biotechnol. 22:428–433.

    Article  Google Scholar 

  • Hartmans, S., J. A. M. de Bont, J. Tramper, and K. Ch. A. M. Luyben. 1985. Bacterial degradation of vinvlchloride. Biotechnol. Lett. 7:383–388.

    Article  CAS  Google Scholar 

  • Hartmans, S., J. A. M. de Bont, and W. Harder. 1989. Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol. Rev. 63:235–264.

    Article  CAS  Google Scholar 

  • Hartmans, S., F.J. Weber, D. P. M. Somhorst, and J. A. M. de Bont. 1991. Alkene monooxygenase from Mycobacterium: A multicomponent enzyme. J. Gen. Microbiol. 137:2555–2560.

    CAS  Google Scholar 

  • Hartmans, S. 1993. Biodegradation of chlorinated and unsaturated hydrocarbons in relation to biological waste-gas treatment. PhD. Thesis, University of Wageningen, The Netherlands.

    Google Scholar 

  • Higgins, I. J., D.Scott, and R.C. Hammond. 1984. Transformation of C 1 compounds by microorganisms. In: Microbial degradation of organic compounds (Edited by D.T. Gibson). Marcel Dekker Inc New York USA.

    Google Scholar 

  • Hippe, H., D. Caspari, K. Fiebig, and G. Gottschalk. 1979. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc Nat. Acad. Sci. USA 76:494–498.

    Article  CAS  Google Scholar 

  • Hoeks, J. 1986. Onderzoekservaringen met betrekking tot landfarming. Syllabus Symposium Biologische Grondreiniging, 27 Nov. 1986, Rotterdam, the Netherlands.

    Google Scholar 

  • Horak, O. 1990. Katalytische Naßoxidation von biologisch schwer abbaubaren Abwasserinhaltsstoffen unter milden Reaktionsbedingugen. Chem.-Ing.-Tech. 62:555–557.

    Article  CAS  Google Scholar 

  • Hou, C.T., R. Patel, A.I. Laskin, N. Barnabe, and I. Barist. 1983. Epoxidation of short-chain alkenes by resting-cell suspensions of propane grown bacteria. Appl. Environ. Microbiol. 46:171–177

    CAS  Google Scholar 

  • Hwang, J.S., and H.N. Chang. 1989. Biotransformation of acrylonitrile to acrylamide using immobilized whole cells of Brevibacterium CH1 in a recycle fed-batch reactor. Biotechnol. Bioeng. 34:380–386.

    Article  CAS  Google Scholar 

  • Hwang, Y., T. Matsuo, K. Hanaki, and N. Suzuki. 1994. Removal of odorous compounds in waste water by using activated carbon, ozonation, and aerated biofilter. Water Res. 28:2309–2319.

    Article  CAS  Google Scholar 

  • Hyman, M. R., C.Y. Kim, and D.J. Arp. 1990. Inhibition of ammonia monooxygenase in Nitrosomonas europaea by carbon disulfide. J. Bacteriol. 172:4775–4782

    CAS  Google Scholar 

  • Hyman, M.R., and P.M. Wood. 1984. Ethylene oxidation by Nitrosomonas europaea. Arch. Microbiol. 137:155–158.

    Article  CAS  Google Scholar 

  • Jamison, V.M., R.L. Raymond, and J.O. Hudson (Jr.). 1975. Biodegradation of high-octane gasoline in groundwater. Dev. Ind. Microbiol. 16:305–312.

    CAS  Google Scholar 

  • Johnson, L.M., and J.M. Thomas. 1984. Biodecontamination of a full scale formaldehyde spill. In: Genetic control of environmental pollutants (Edited by G.S. Omenn and A. Hollander). Plenum Press, New York, USA.

    Google Scholar 

  • Kakiichi, N., S. Kamala, K. Komine, and K. Uchida. 1989. Effects of sodium dichloroisocyanurate, sodium hypochlorite, and formaldehyde on activated sludge. Jap. J. Zootech. Sci. 60:857–864.

    CAS  Google Scholar 

  • Kane, D.A., and K.J. Williamson. 1983. Bacterial toxicity and metabolism of hydrazine fuels. Arch. Environm. Contam. Toxicol. 12:447–453.

    CAS  Google Scholar 

  • Kane, D.A., and K.J. Williamson. 1980. Bacterial toxicity and metabolism of three hydrazine fuels. Report, Air Force Eng. Serv. Cent., Eng. Serv. Lab.,[Tech. Rep.] ESL-TR-80–49, order no. AD- A099514, 118 p. From: Gov.. Rep. Announce. Index (U. S.) 1981, 81(20), 4273.

    Google Scholar 

  • Kaplan, D. L., P. A. Riley, D.J. Emerson, and A. M. Kaplan. 1984. Degradation of ammonium nitrate propellants in aqueous and soil systems. Environ. Sci. Technol. 18:694–699.

    Article  CAS  Google Scholar 

  • Kaplan, D.L., and A.M. Kaplan. 1985. Biodegradation of N-nitrosodimethylamine in aqueous and soil systems. Appl. Environ. Microbiol. 50:1077–1086.

    CAS  Google Scholar 

  • Kaplan, D.L. 1989. Biotransformation pathways of hazardous energetic organo-nitro compounds. In: Advances in Applied Biotechnology Series, Vol. 4: Biotechnology and Biodegradation (Edited by D. Kamely, A. Chakrabarty, and G. Omenn). The Portfolio Publishing Company, Texas, USA.

    Google Scholar 

  • Kappeler, Th., and K. Wuhrmann. 1978a. Microbial degradation of the water-soluble fraction of gas oil-I. Water Res. 12:327–334.

    Article  CAS  Google Scholar 

  • Kappeler, Th., and K. Wuhrmann. 1978b. Microbial degradation of the water-soluble fraction of gas oil-II. Bioassays with pure strains. Water Res. 12:335–342.

    Article  CAS  Google Scholar 

  • Kaulfers, P.-M., and A. Marquardt. 1991. Demonstration of formaldehyde activity in formaldehyde-resistant Enterobacteriaceae. FEMS Microbiol. Lett. 79:335–338.

    Article  CAS  Google Scholar 

  • Kelly, D.P., G. Malin, and A.P. Wood. 1993. Microbial transformations and biogeochemical cycling of one-carbon substrates containing sulphur, nitrogen or halogens. In: Microbial growth on C 1-compounds (Edited by J.C. Murrell and D.P. Kelly). Intercept Ltd., Hampshire, UK.

    Google Scholar 

  • Kelly, D. P., S.C. Baker, J. Trickett, M. Davey, and J.C. Murrell. 1994. Methanesulphonate utilization by a novel methylotrophic bacterium involves an unusual monooxygenase. Microbiology 140:1419–1426.

    Article  CAS  Google Scholar 

  • Kesseler, F. P., and A. C. Schwartz. 1995. Dye-linked aldehyde dehydrogenase from methanolgrown Hyphomicrobium contains a binuclear iron-sulfur center. In: Poster session B of the 8th International Symposium on microbial growth on C1 compounds, San Diego, California, USA.

    Google Scholar 

  • Kincannon, D.F., A. Weinert, R. Paddor, E.L. Stover. 1983. Predicting treatability of multiple organic priority pollutant waste waters from single-pollutant treatability studies. Proc. Ind. Waste Conf. 37:641–650.

    CAS  Google Scholar 

  • Kobayashi, M., H. Komeda, T. Nagasawa, H. Yamada, and S. Shimizu. 1993. Occurrence of amidases in the industrial microbe Rhodococcus rhodochrous J1. Biosci. Biotech. Biochem. 57:1949–1950.

    Article  CAS  Google Scholar 

  • Knowles, C. J., and J.M. Wyatt. 1992. Microbial degradation of waste. Eur. patent specification EPO 274 856 B 1.

    Google Scholar 

  • Kung, H.F., and C. Wagner. 1969. Gamma-glutamyl methylarrude, a new intermediate in me metabolism of methylamine. J. Biol. Chem. 244:4136–4140.

    CAS  Google Scholar 

  • Large, P.J., and G.W. Haywood. 1981. Methylophilus methylotrophus grows on methylated amines. FEMS Microbiol. Lett. 11:207–209.

    CAS  Google Scholar 

  • Larsson, L.F. 1991. Treatment of waste water. Patent Cooperation Treaty, International publication no. WO 91 / 12208.

    Google Scholar 

  • Leahy, J.G., and R.R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiological Reviews 54:305–315.

    CAS  Google Scholar 

  • Leak, D.L., P.J. Aikens, and M. Seyed-Mahmoudian. 1992. The microbial production of epoxides. TIBTECH 10:256–261

    Article  CAS  Google Scholar 

  • Lehtomäki, M., and S. Niemelä. 1975. Improving microbial degradation of oil in soil. Ambio 4:126–129.

    Google Scholar 

  • Lidstrom, M. E., and A.Y. Chistoserdov. 1993. Molecular biology and genetics of methylamine dehydrogenase. In: Microbial growth on C 1compounds (Edited by J. C. Murrell and D.P. Kelly). Intercept Ltd., Hampshire, UK.

    Google Scholar 

  • Lindstrorn, J.E., R.C. Prince, J.C. Clark, M.J. Grossman, T.R. Yeager, J.F. Braddock, and E.J. Brown. 1991. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl. Environ. Microbiol. 57:2514–2522.

    Google Scholar 

  • Linton, E. A., and C. J. Knowles. 1986. Utilization of aliphatic amides and nitriles by Nocardia rhodochrous LL100–21. J. Gen. Microb. 132:1493–1501.

    CAS  Google Scholar 

  • Loginova, N.V., and Y.A. Trotsenko. 1975. Facultative methylotroph belonging to the genus Arthobacter. Microbiology (English translation from Mikrobiologya) 43:831–836.

    Google Scholar 

  • London, S. A., C. R. Mantel, J. D. Robinson, and S. Luking. 1983. Effects of selected hydrazines on the early death rates of Enterobacter cloacae. Bull. Environ. Contam. Toxicol. 31:360–368.

    Article  CAS  Google Scholar 

  • Maestracci, M., A. Thiéry, K. Bui, A. Arnaud, and P. Galzy. 1984. Activity and regulation of an amidase (acrylamide amidohydrolase, E.C. 3.5.1.4) with a wide substrate spectrum from a Brevibacterium sp. Arch. Microbiol. 138:315–319.

    Article  CAS  Google Scholar 

  • Mahmoudian, M. 1989. PhD. Thesis. Imperial College, University of London, UK.

    Google Scholar 

  • Mahmoudian, M., and A. Michael. 1992. Stereoselective epoxidation of phenylallylether by alkene-utilizing bacteria. Appl. Microbiol. Biotechnol. 37:28–31.

    CAS  Google Scholar 

  • Meiberg, J.M. 1979. Metabolism of methylated amines in Hyphomicrobium spp. PhD. Thesis. University of Groningen, The Netherlands.

    Google Scholar 

  • Milvy, P., and M. Wolff. 1977. Mutagenic studies with acrylonitrile. Mutation Res. 48:271–278

    Article  CAS  Google Scholar 

  • Murdanoto, A.P., Y. Sakai, T. Konishi, L. Sembiring, Y. Tani, and N. Kato. 1995. A novel enzyme, methylformate synthase, catalyzes formaldehyde oxidation in the methylotrophic yeasts. In: Poster session B of the 8th International Symposium on microbial growth on C1 compounds, San Diego, California, USA.

    Google Scholar 

  • Myers, P.A., and L.J. Zatman. 1971. The metabolism of trimethylamine N-oxide by Bacillus PM6. Biochem. J. 121–131.

    Google Scholar 

  • Nagasawa, T., and H. Yamada. 1989. Microbial transformations of nitriles. Trends Biotechnol. 7:153–158.

    Article  CAS  Google Scholar 

  • Nagasawa, T., K. Ryuno, and H. Yamada. 1989. Superiority of Pseudomonas chlororaphis B23 nitrile hydratase as a catalyst for the enzymatic production of acrylamide. Experientia 45:1066–1070.

    Article  CAS  Google Scholar 

  • Nagasawa, T., H. Shimizu, and H. Yamada. 1993. The superiority of the third-generation catalyst, Rhodococcus rhodochrous J 1 nitrile hydratase, for industrial production of acrylamide. Appl. Microbiol. Biotechnol. 40:189–195.

    Article  CAS  Google Scholar 

  • Nagle, N.J., C.J. Rivard, A. Mohagheghi, and G.P. Philippidis. 1995. Bioconversion of cyanide and acetonitrile by a municipal-sewage-derived anaerobic consortium. In: Bioremediation of inorganics (Edited by R.E. Hinchee, J.L. Means, and D.R. Burris). Book 3(10) of the Third International in situ and on-site Bioreclamation Symposium, San Diego, USA. Battelle Press, Columbus, USA.

    Google Scholar 

  • Nawaz, M.S., and K.D. Chapatwala. 1990. Simultaneous degradation of acetonitrile and biphenyl by Pseudomonas aeruginosa. Can. J. Microbiol. 37:411–418.

    Article  Google Scholar 

  • Omar, S.H., U. Büdecker, and H.-J. Rehm. 1990. Degradation of oily sludge from a flotation unit by free and immobilized microorganisms. Appl. Microbiol. Biotechnol. 34:259–263.

    Article  CAS  Google Scholar 

  • Ottengraf, S.P., J.J.P. Meesters, A.H.C. van den Oever, and H.R. Rozema. 1986. Biological elimination of volatile xenobiotic compounds in biofilters. Bio. Eng. 1:61–69.

    Article  Google Scholar 

  • Ou, L.-T. 1987. Microbial degradation of hydrazine. Bull. Environ. Contam. Toxicol. 39:78–85.

    Article  CAS  Google Scholar 

  • Ou, L.-T., and J.J. Street. 1987. Hydrazine degradation and its effect on microbial activity in soil. Bull. Environ. Contam. Toxicol. 38:179–183.

    Article  CAS  Google Scholar 

  • Ou, L.-T. 1988. Degradation of monomethylhydrazine by two soil bacteria. Bull. Environ. Contam. Toxicol. 41:851–857.

    Article  CAS  Google Scholar 

  • Phillips, P., J. Bender, J. Word, D. Niyogi, and B. Denovan. 1994. Mineralization of naphthalene, phenanthrene, chrysene, and hexadecane with constructed silage microbial mat. In: Applied biotechnology for site remediation (Edited by R.E. Hinchee, D.B. Anderson, F. Blaine Metting, and G.D. Sayles). CRC Press, New York, USA.

    Google Scholar 

  • Primrose, S.B. 1979. Ethylene and agriculture: The role of the microbe. J. Appl. Bacteriol. 43:1–25.

    Google Scholar 

  • Prince, R.C. 1994. Monitoring the efficacy of shoreline bioremediation after the Exxon Valdez oil spill. In: Bioremediation. Tokyo’94 workshop, p. 215–221. OECD Documents, France.

    Google Scholar 

  • Pritchard, P. H., and C. F. Costa. 1991. EPA’s Alaska oil spill bioremediation project. Environ. Sci. Technol. 25:372–379.

    Article  CAS  Google Scholar 

  • Pritchard, P.H., J.G. Mueller, J.C. Rogers, F.V. Kremer, and J.A. Glaser. 1992. Oil spill bioremediation: Experiences, lessons and results from the Exxon Valdez oil spill in Alaska. Biodegradation 3:315–335.

    Article  CAS  Google Scholar 

  • Raja, L.M.V., G. Elamvaluthy, R. Palaniappan, and R.M. Krishnan. 1991. Novel biotreatment process for glycol waters. Appl. Biochem. Biotechnol. 29:827–841.

    Article  Google Scholar 

  • Ras, J., W.N.M. Reijnders, S. Koning, and N. Harms. 1995. Genetics of nnethanol oxidation in Paracoccus denitrificans. In: Speaker abstracts of the 8th International Symposium on microbial growth on C1 compounds, San Diego, California, USA.

    Google Scholar 

  • Raymond, R.L., J.O. Hudson, and V.W. Jamison. 1976. Oil degradation in soil. Appl. Environ. Microbiol. 31: 522–535.

    CAS  Google Scholar 

  • Richards, D. J., and W.K. Shieh. 1986. Biological fate of organic priority pollutants in the aquatic environment. Water Res. 20:1077–1090.

    Article  CAS  Google Scholar 

  • Romanovskaya, V. A., I. G. Sokolov, S. M. Stolyar, and Y. R. Malashenko. 1992. Role of formaldehyde in metabolism of methane oxidizing bacteria and occurrence of their HCOHresistant mutants. In: Proceedings of the 3rd International Conference: Role of formaldehyde in biological systems (Edited by E. Tyihák), Hungarian Biochemical Society, Hungarv.

    Google Scholar 

  • Rosenberg, É., R. Legmann, A. Kushmaro, R. Taube, E. Adler, and E.Z. Ron. 199 Pe 2. troleum bioremediation — a multiphase problem. Biodegradation 3:337–350.

    Google Scholar 

  • Rueter, P., R. Rabus, H. Wilkes, F. Aeckersberg, F.A. Rainey, H.W. Jannasch, and F. Widdel. 1994. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulfate-reducing bacteria. Nature 372:455–458.

    Article  CAS  Google Scholar 

  • Sakai, Y. 1995. Applications of cellular functions of the methylotrophic yeast. In: Speaker abstracts of the 8th International Symposium on microbial growth on C1 compounds, San Diego, California, USA.

    Google Scholar 

  • Sawada, S., K. Nakahata, and T. Totsuka. 1985. Fundamental studies on dynamics of ethylene in an ecosystem. III. Degradation capacity of atmospheric ethylene in soils taken from various vegetations. Jap. J. Ecol. 35:453–459.

    CAS  Google Scholar 

  • Schmidt, E.W. 1984. Hydrazine and its derivatives. John Wiley and Sons, New York, USA.

    Google Scholar 

  • Shailubhai, K. 1986. Treatment of petroleum industry oil sludge in soil. 1986. Trends Biotechnol. 4:202–206.

    Article  CAS  Google Scholar 

  • Shirkot, C. K., P. Shirkot, and K. G. Gupta. 1994. Isolation from soil and growth characteristics of the tetramethylthiuram disulfide (TMTD) degrading strain of Pseudomonas aeruginosa. J. Environ. Sci. Health 29:605–614.

    Google Scholar 

  • Sinclair, J.L., D.H. Kampbell, M.L. Cook, and J.T. Wilson. 1993. Protozoa in subsurface sediments from sites contaminated with aviation gasoline or jet fuel. Appl. Environ. Microbiol. 59:467–472.

    CAS  Google Scholar 

  • Slonium, A.R., and J.B Gisclard. 1976. Hydrazine degradation in aquatic systems. Bull. Environ. Contam. Toxicol. 16: 301–309.

    Article  Google Scholar 

  • Small, F.J., and S.A. Ensign. 1995. Possible involvement of carbon dioxide fixation in the metabolism of alithhatic alkenes and epoxides by Xanthobacter strain Py2. In: Speaker abstracts of the 8 International Symposium on microbial growth on C1 compounds, San Diego, California, USA.

    Google Scholar 

  • Small, F.J., J.K. Tilley, and S.A. Ensign. 1995. Characterization of a new pathway for epichlorohydrin degradation by whole cells of Xanthobacter strain Py2. Appl. Environ. Microbiol. 61:1507–1513.

    CAS  Google Scholar 

  • Smith, K. A., J.M. Bremner, and M. A. Tabatabai. 1973. Sorption of gaseous atmospheric pollutants by soils. Soil Sci. 116:313–319.

    Article  CAS  Google Scholar 

  • Smith, A.E., and A.J. Aubin. 1992. Breakdown of [14C]dimethylamine in soils. J. Agric. Chem. 40, 2299–2301.

    Article  CAS  Google Scholar 

  • Sowers, K.R., and J.G. Ferry. 1983. Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl. Environ. Microbiol. 45:684–690.

    CAS  Google Scholar 

  • Stanley, S. H., A. O. L. Richards, M. Suzuki, and H. Dalton. 1992. The biotransformation of propylene to propylene oxide by Methylococcus capsulatus (bath): 2. A study of the biocatalyst stability. Biocatalysis 6:177–190.

    Article  CAS  Google Scholar 

  • Tabak, H.H., S. A. Quave, C. I. Mashni, and E.F. Barth. 1981. Biodegradability studies with organic priority pollutant compounds. J. Water Pollut. Control Fed. 53:1503–1518.

    CAS  Google Scholar 

  • Tabita, F.R. 1995. Rubisco biochemistry and the regulation of CO2 fixation. In: Speaker abstracts of the 8th International Symposium on microbial growth on C1 compounds, San Diego, California, USA.

    Google Scholar 

  • Tate, R. L., and M. Alexander. 1974. Formation of dimethylamine and diethylamine in soil treatedd with nesticides. Soil Science. 118:317–321.

    Article  CAS  Google Scholar 

  • Tate, R.L., and M. Alexander. 1976. Microbial formation and degradation of dimethylamine. Appl. Environm. Microbiol. 31: 399–403.

    CAS  Google Scholar 

  • Thiéry, A., M. Maestracci, A. Arnaud, and P. Galzy. 1986. Nitriles as growth substrates for Rrevihacterium sp R 312 and its mutant M2. Zentrabl. Mikrobiol. 141:575–582.

    Google Scholar 

  • Thomas, J. M., and M. Alexander. 1981. Microbial formation of secondary and tertiary amines in municipal sewage. Appl. Environ. Microbiol. 42:461–463.

    CAS  Google Scholar 

  • Trower, M.K., R.M. Buckland, R. Higgins, and M. Griffin. 1985. Isolation and characterization of a cyclnhexane-metaholizing Xanthobacter sp. Appl. Environ. Microbiol. 49:1282–1289.

    CAS  Google Scholar 

  • Urakami, T., H. Kobayashi, and H. Araki. 1990. Isolation and identification of N,Ndimethylformamide-biodegrading bacteria. J. Ferm. Bioeng. 1:45–47.

    Article  Google Scholar 

  • van Ginkel, C. G., and J. A. M. de Bont. 1986. Isolation and characterization of alkene-utilizing Xanthobacter spp. Arch. Microbiol. 145:403–407.

    Article  Google Scholar 

  • van Ginkel, C.G., H.G.J. Welten, J.A.M. de Bont, and H.A.M. Boerrigter. 1986. Removal of ethene to very low concentrations by immobilized Mycobacterium E3. J. Chem. Tech. Biotechnol. 36: 593–598.

    Google Scholar 

  • van Ginkel, C. G., H. G. J. Welten, and J. A. M. de Bont. 1987. Oxidation of gaseous and volatile hydrocarbons by selected alkene-utilizing bacteria. Appl. Environ. Microbiol. 53:2903–2907.

    Google Scholar 

  • van Ophem, P. W., and J. A. Duine. 1990. Different types of formaldehyde-oxidizing dehydrogenases in Nocardia species 239: Purification and characterization of an NADdependent aldehyde dehydrogenase. Arch. Biochem. Biophysics 282:248–253.

    Article  Google Scholar 

  • van Rijn, J.P., N.M. van Straalen, and J. Willems. 1995. Handboek Bestrijdingsmiddelen, gebruik en milieu-effecten. VU Uitgeverij, Amsterdam, The Netherlands.

    Google Scholar 

  • VROM. 1994. Herziening van de lijst met prioritaire stoffen. Publicatiereeks stoffen, veiligheid, straling (nr. 1994/16). VROM, Zoetemeer, The Netherlands.

    Google Scholar 

  • Wachinsky, A.M., and J.A. Farmwald. 1980. The toxicity and biodegradability of hydrazine waste waters treated with UV-chlorinolysis. Report, AFESC/ESLTR-80–31, order no. AD-A094187, 60 p. Avail. NTIS. From: Gov. Rep. Announce. Index (U.S.) 1981, 81 (10), 2008

    Google Scholar 

  • Wang, X., X. Yu, and R. Bartha. 1990. Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil. Environ. Sci. Technol. 24:1086–1089

    Article  CAS  Google Scholar 

  • Watanabe, I., Y. Satoh, K. Enomoto, S. Seki, and K. Sakashita. 1987. Optimal conditions for cultivation of Rhodococcus sp. N-774 and for conversion of acrylonitrile to acrylamide by resting cells. Agric. Biol. Chem. 51:3201–3206.

    Article  CAS  Google Scholar 

  • Watkinson, R.J., and P. Morgan. 1990. Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1:79–92.

    Article  CAS  Google Scholar 

  • Watson, H.M. 1993. A comparison of the effects of two methods of acclimation on aerobic biodegradability. Environ. Toxicol. Chem. 12:2023–2030.

    Article  CAS  Google Scholar 

  • Wenzhong, L., Z. Hongyi, and Y. Huifang. 1991. Study on nitrile-degrading microorganisms. J. Environ. Sci. (China) 3:91–97.

    Google Scholar 

  • Weijers, C.A.G.M., C.G. van Ginkel, and J.A.M. de Bont. 1988a. Enantiomeric composition of lower epoxyalkanes produced by methane-, alkane-, and alkene-utilizing bacteria. Enzyme Microbiol. Technol. 10:214–218.

    Article  CAS  Google Scholar 

  • Weijers, C.A.G.M., A. de Haan, and J.A.M. de Bont. 1988b. Microbial production and metabolism of epoxides. Microbiol. Sci. 5:156–159.

    CAS  Google Scholar 

  • Weijers, C.A.G.M., A. de Haan, and J.A.M. de Bont. 1988c. Chiral resolution of 2,3–epoxyalkanes by Xanthobacter Py2. Appl. Microbiol. Biotechnol. 27:337–340.

    Article  CAS  Google Scholar 

  • Weijers, C.A.G.M., M.J.J. Litjens, and J.A.M. de Bont. 1992. Synthesis of optically pure 1,2–epoxy-propane by microbial asymmetric reduction of chloroacetone. Appl. Microbiol. B iotechnol. 3 8: 297–300.

    Google Scholar 

  • Weijers, C.A.G.M., H. Jongejan, M.C.R. Franssen, A. de Groot, and J.A.M. de Bont. 1995. Dithiol- and NAD-dependent degradation of epoxyalkanes by Xanthobacter Py2. Appl. Microbiol. Biotechnol. 42:775–781.

    Article  CAS  Google Scholar 

  • Whitfield, D., and P.J. Large. 1986. Enzymes metabolizing dimethylamine, trimethylamine and trimethylamine N-oxide in the yeast Sporopachydermia cereana grown on amines as sole nitrogen source. FEMS Microbiol. Lett. 35:99–105.

    Article  CAS  Google Scholar 

  • Wiegant, W.M., and J.A.M. de Bont. 1980. A new route for ethylene glycol metabolism in Mycobacterium E44. J. Gen. Microbiol. 120:325–331.

    CAS  Google Scholar 

  • Wild, A.P., W. Winkelbauer, and T. Leisinger. 1995. Anaerobic dechlorination of trichloroethene, tetrachloroethene and 1,2-dichloroethane by an acetogenic mixed culture in a fixed-bed reactor. Biodegradation 6:309–318.

    Article  CAS  Google Scholar 

  • World Health Organization. 1983. Acrylonitrile. Environmental Health Criteria 28. World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • World Health Organization. 1985a. Ethylene Oxide. Environmental Health Criteria 55. World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • World Health Organization. 1985b. Propylene Oxide. Environmental Health Criteria 56. World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • World Health Organization. 1989. Formaldehyde. Environmental Health Criteria 89. World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • World Health Organization. 1992. Acrolein. Environmental Health Criteria 127. World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • Wyatt, J.M., and C.J. Knowles. 1995. The development of a novel strategy for the microbial treatment of acrylonitrile effluents. Biodegradation 6:93–107.

    Article  CAS  Google Scholar 

  • Yamada, H., M. Kawamura, and I. Somiya. 1991. Decomposition and formation of formaldehyde during blue-green algal growth cycles. Intern. J. Environ. Studies 38:55–64.

    Article  CAS  Google Scholar 

  • Yoshinari, T. 1995. Synthesis and degradation of dimethyl nitrosamine in the natural environment and in humans. In: Biotransformations: Microbial degradation of health-risk compounds (Edited by V.P. Singh). Progress in industrial microbiology, Vol 32. Elsevier Science Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  • Zeyer, J., P. Höhener, D. Hunkeler, D. Hahn, B. Zarda, and A. Hess. 1996. Anaerobic in situ bioremediation of mineral oil contaminated aquifers: Monitoring concepts and quantification of degradation rates. In: Proceedings of the UIB-GBF-CSIC-TUB Symposium: Biodegradation of organic pollutants. June 29-July 3, Palma de Mallorca, Mallorca, Spain.

    Google Scholar 

  • Zwart, K.B., and W. Harder. 1983. Regulation of the metabolism of some alkylated amines in the yeast Candida utilis and Hansenula polymorpha. J. Gen. Microbiol. 129:3157–3169.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Agteren, M.H., Keuning, S., Janssen, D.B. (1998). Aliphatic compounds. In: Handbook on Biodegradation and Biological Treatment of Hazardous Organic Compounds. Environment & Chemistry, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9062-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9062-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5010-6

  • Online ISBN: 978-94-015-9062-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics