Skip to main content

Part of the book series: Petrology and Structural Geology ((PESG,volume 10))

Abstract

This chapter compares modern exhumation and surface uplift rates with the rates needed for the preservation of ultrahigh pressure (UHP) metamorphic rocks. The highest recorded exhumation rates of ~ 5–10 mm/a are inferred from isotopic and fission-track analyses in the Himalaya, Southern Alps of New Zealand, and D’Entrecasteaux Islands. Similar rates (~7 mm/a) of surface uplift are measured from leveling surveys in Nepal and correlations of marine terraces in the Southern Alps. In Nepal, however, this surface uplift rate is occurring despite erosion, and the true rate of surface uplift is probably considerably higher. In restraining bends along the San Andreas and Denali strike-slip faults in North America, contraction has produced localized regions with relatively high exhumation rates of 1–5 mm/a. A similar surface uplift rate (3–5 mm/a) was obtained from marine terrace correlations in the King Range of northern California.

Few modern exhumation rates fall within the range thought to be necessary for the preservation of high-pressure minerals during exhumation (10–100 mm/a), even though, because of a long-term shift in global climate, erosion rates appear to have accelerated during the late Cenozoic. Both the Himalaya and the Southern Alps of New Zealand have high erosion rates that are a direct result of modern precipitation and glaciation patterns; these high rates of erosion may act to enhance exhumation rates. Therefore, because the exhumation rates recorded in these two mountain ranges are the highest modern rates yet recorded, researchers studying UHP rocks are urged to consider the possibility that UHP minerals can be preserved at exhumation rates of <10 mm/a.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abers, G.A. (1997) Shallow dips of normal faults during rapid extension: Earthquakes in the Woodlark — D’Entrecasteaux rift system, Papua New Guinea, Journal of Geophysical Research 102, 15301–15317.

    Article  Google Scholar 

  • Ahnert, F. (1970) Functional relationships between denudation, relief, and uplift in large midlatitude basins, American Journal of Science 268, 243–263.

    Article  Google Scholar 

  • Allis, R.G. (1986) Mode of crustal shortening adjacent to the Alpine fault, New Zealand, Tectonics 5, 15–32.

    Article  Google Scholar 

  • Anderson, B. (1994) Evolution of the Santa Cruz Mountains, California, through tectonic growth and geomorphic decay, Journal of Geophysical Research 99, 20,161–20,179.

    Google Scholar 

  • Baldwin, S.L., Lister, G.S., Hill, E.J., Foster, D.A., and McDougall, I. (1993) Thermochronologic constraints on the tectonic evolution of active metamorphic core complexes, D’Entrecasteaux Islands, Papua New Guinea, Tectonics 12, 611–628.

    Article  Google Scholar 

  • Beaumont, C., Fullsack, P., and Hamilton, J. (1992) Erosional control of active compressional orogens, in K.R. McClay (ed.), Thrust Tectonics, Chapman and Hall, London, pp. 1–18.

    Chapter  Google Scholar 

  • Bevis, M., Taylor, F.W., Schutz, B.E., Recy, J., Isacks, B.R., Helu, S., Singh, R., Kendrick, E., Stowell, J., Taylor, B., and Calmant, S. (1995) Geodetic observations of very rapid convergence and back-arc extension at the Tonga arc, Nature 374, 249–251.

    Article  Google Scholar 

  • Bierman, P.R. (1994) Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: A review from the geomorphic perspective, Journal of Geophysical Research 99, 13885–13896.

    Article  Google Scholar 

  • Bilham, R., Larson, K., Freymueller, J., and Members, P.I. (1997) GPS measurements of presentday convergence across the Nepal Himalaya, Nature 386, 61–63.

    Article  Google Scholar 

  • Bloom, A.L., Broecker, W.S., Chappell, J.M.A., Matthews, R.K., and Mesolella, K.J. (1974) Quaternary sea level fluctuations on a tectonic coast: New 230Th/234U dates from the Huon Peninsula, New Guinea, Quaternary Research 4, 185–205.

    Article  Google Scholar 

  • Blythe, A.E., Fielding, E.J., and Burbank, D.W. (1996) Morphology as a function of bedrock uplift and climate: a case study of the Transverse Ranges, Southern California, from apatite fissiontrack and DEM analyses, Transactions of the American Geophysical Union, Eos 77, F644.

    Google Scholar 

  • Brown, R. (1991) Backstacking apatite fission-track “stratigraphy” : A method for resolving the erosional and isostatic rebound components of tectonic uplift histories, Geology 19, 74–77.

    Article  Google Scholar 

  • Brozovic, N., Burbank, D.W., and Meigs, A.J. (1997) Climatic limits on landscape development in the northwestern Himalaya, Science 276, 571–574.

    Article  Google Scholar 

  • Bull, W.B. (1991) Geomorphic Responses to Climatic Change, Oxford University Press, New York.

    Google Scholar 

  • Bull, W.B. and Cooper, A.F. (1986) Uplifted marine terraces along the Alpine fault, New Zealand, Science 234, 1225–1228.

    Article  Google Scholar 

  • Burchfiel, B.C., Cheng, Z., Hodges, K.V., Liu, Y., Royden, L.H., Deng, C., and Xu, J. (1992) The South Tibetan Detachment System, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt, Geological Society of America Special Paper 269, 41.

    Google Scholar 

  • Burg, J.P., Davy, P., Nievergelt, P., Oberli, F., Seward, D., Diao, Z., and Meier, M. (1997) Exhumation during crustal folding in the Namche-Barwa syntaxis, Terra Nova 9, 53–56.

    Article  Google Scholar 

  • Caby, R. (1994) Precambrian coesite from northern Mali; first record and implications for plate tectonics in the trans-Saharan segment of the Pan-African belt, European Journal of Mineralogy 6, 235–244.

    Google Scholar 

  • Chopin, C. (1984) Coesite and pure pyrope in high-grade blueschists of the western Alps: a first record and some consequences, Contributions to Mineralogy and Petrology 86, 107–118.

    Article  Google Scholar 

  • de Sitter, L.U. (1952) Pliocene uplift of Tertiary mountain chains, American Journal of Science 250, 297–307.

    Article  Google Scholar 

  • DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S. (1990) Current plate motions, Geophysics Journal International 101, 425–478.

    Article  Google Scholar 

  • Draper, G. and Bone, R. (1981) Denudation rates, thermal evolution, and preservation of blueschist terrains, Journal of Geology 89, 601–613.

    Article  Google Scholar 

  • Dumitru, T.A. (1991) Major Quaternary uplift along the northernmost San Andreas fault, King Range, northwestern California, Geology 19, 526–529.

    Article  Google Scholar 

  • England, P. and Molnar, P. (1990) Surface uplift, uplift of rocks, and exhumation of rocks, Geology 18, 1173–1177.

    Article  Google Scholar 

  • Farley, K.A., Wolf, R.A., and Silver, L.T. (1996) The effects of long alpha-stopping distances on (U-Th)/He dates, Geochimica Cosmochimica et Acta 60, 4223–4230.

    Article  Google Scholar 

  • Fitzgerald, P.G. and Gleadow, A.J.W. (1988) Fission-track geochronology, tectonics and structure of the Transantarctic Mountains in northern Victoria Land, Antarctica, Chemical Geology 73, 169–198.

    Google Scholar 

  • Fitzgerald, P.G., Sorkhabi, R.B., Redfield, T.F., and Stump, E. (1995) Uplift and denudation of the central Alaska Range: A case study in the use of apatite fission track thermochronology to determine absolute uplift parameters, Journal of Geophysical Research 100, 20,175–20,191.

    Google Scholar 

  • Fossen, H. and Rykkelid, E. (1992) Postcollisional extension of the Caledonide orogen in Scandinavia: structural expressions and tectonic significance, Geology 20, 737–740.

    Article  Google Scholar 

  • Foster, D., Gleadow, A.J.W., and Mortimer, G. (1994) Rapid Pliocene exhumation in the Karakoram (Pakistan), revealed by fission-track thermochronology of the K2 gneiss, Geology 22, 19–22.

    Article  Google Scholar 

  • Gannser, A. (1981) The geodynamic history of the Himalaya, in H.K. Gupta and F.M. Delaney (eds.), Zagros, Hindu Kush, Himalayan geodynamic evolution, 3, American Geophysical Union, Washington, D.C., pp. 111–121.

    Chapter  Google Scholar 

  • Gleadow, A.J.W. and Duddy, I.R. (1981) A natural long-term track annealing experiment for apatite, Nuclear Tracks 5, 169–174.

    Article  Google Scholar 

  • Gleadow, A.J.W., Duddy, I.R., Green, P.F., and Hegarty, K.A. (1986) Fission track lengths in the apatite partial annealing zone and the interpretation of mixed ages, Earth and Planetary Science Letters 78, 245–254.

    Article  Google Scholar 

  • Gleadow, A.J.W., Duddy, I.R., and Lovering, J.F. (1983) Fission track analysis: A new tool for the evaluation of thermal histories and hydrocarbon potential, Petroleum Exploration Association of Australia Journal 23, 93–102.

    Google Scholar 

  • Gleadow, A.J.W. and Fitzgerald, P.G. (1987) Uplift history and structure of the Trans-Antarctic Mountains: New evidence from fission track dating of basernent apatites in the Dry Valleys area, Southern Victoria Land, Earth and Planetary Science Letters 82, 1–14.

    Article  Google Scholar 

  • Green, P.F., Duddy, I.R., Gleadow, A.J.W., Tingate, P.T., and Laslett, G.M. (1986) Thermal annealing of fission tracks in apatite: 1. A qualitative description, Chemical Geology 59, 237–253.

    Article  Google Scholar 

  • Green, P.F., Duddy, I.R., Laslett, G.M., Hegarty, K.A., Gleadow, A.J.W., and Lovering, J.F. (1989) Thermal annealing of fission tracks in apatite: 4. Quantitative modeling techniques and extensions to geological timescales, Chemical Geology 79, 155–182.

    Google Scholar 

  • Hacker, B.R. and Peacock, S.M. (1994) Creation, preservation, and exhumation of coesite-bearing, ultrahigh-pressure metamorphic rocks, in R.G. Coleman and X. Wang (eds.), Ultrahigh Pressure Metamorphism, Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Hallet, B., Hunter, L., and Bogen, J. (1996) Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications, Global and Planetary Change 12, 213–235.

    Article  Google Scholar 

  • Harrison, T.M., Ryerson, F.J., Le Fort, P., Yin, A., Lovera, O.M., and Catlos, E.J. (1997) A Late Miocene-Pliocene origin for the central Himalayan inverted metamorphism, Earth and Planetary Science Letters 146, E1—E7.

    Google Scholar 

  • Hay, W.W., Sloan, J.L., and Wold, C.N. (1988) Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction, Journal of Geophysical Research 93, 14933–14940.

    Article  Google Scholar 

  • Hill, E.J. and Baldwin, S.L. (1993) Exhumation of high-pressure metamorphic rocks during crustal extension in the D’Entrecasteaux region, Papua New Guinea, Journal of Metamorphic Geology 11, 261–277.

    Article  Google Scholar 

  • Hill, K.C. and Gleadow, A.J.W. (1989) Uplift and thermal history of the Papuan Fold Belt, Papua New Guinea: Apatite fission track analysis, Australian Journal of Earth Sciences 36, 515–539.

    Article  Google Scholar 

  • Jackson, M. and Bilham, R. (1994) Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet, Journal of Geophysical Research 99, 13,897–13,912.

    Article  Google Scholar 

  • Jacques, A.L. and Robinson, G.P. (1977) Continent/island arc collision in northern Papua New Guinea, Journal of Australian Geology and Geophysics 2, 289–303.

    Google Scholar 

  • Jordan, T.J. and Minster, B. (1988) Crustal deformation in western North America, Spektrum der Wissenschaft 1988, 106–116.

    Google Scholar 

  • Kamp, P.J.J. (1986) Late Cretaceous-Cenozoic tectonic development of the southwest Pacific region, Tectonophysics 121, 255–281.

    Article  Google Scholar 

  • Keller, E.A. and Pinter, N. (1996) Active Tectonics, Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Larson, R.L. (1991) Latest pulse of Earth: Evidence for a mid-Cretaceous superplume, Geology 19, 547–550.

    Article  Google Scholar 

  • Le Pichon, X., Fournier, M., and Jolivet, L. (1992) Kinematics, topography, shortening, and extrusion in the India-Eurasia collision, Tectonics 11, 1085–1098.

    Article  Google Scholar 

  • Macfarlane, A.M. (1993) Chronology of tectonic events in the crystalline core of the Himalaya, Langtang National Park, Central Nepal, Tectonics 12, 1004–1025.

    Article  Google Scholar 

  • Mancktelow, N.S. and Grasemann, B. (1997) Time-dependent effects of heat advection and topography on cooling histories during erosion, Tectonophysics 270, 167–195.

    Article  Google Scholar 

  • McDougall, I. and Harrison, T.M. (1988) Geochronology and Thermochronology by the 40 Ar/ 39 Ar Method, Oxford University Press, New York.

    Google Scholar 

  • Meigs, A.J., Burbank, D.W., and Beck, R.A. (1995) Middle-late Miocene (>10 Ma) formation of the Main Boundary thrust in the western Himalaya, Geology 23, 423–426.

    Article  Google Scholar 

  • Merritts, D. and Bull, W.B. (1989) Interpreting Quaternary uplift rates at the Mendocino triple junction, northern California, Geology 17, 1020–1024.

    Article  Google Scholar 

  • Michard, A., Chopin, C., and Henry, C. (1993) Compression versus extension in the exhumation of the Dora-Maira coesite-bearing unit, Western Alps, Italy, Tectonophysics 221, 173–193.

    Article  Google Scholar 

  • Milliman, J.D. and Meade, R.H. (1983) World-wide delivery of river sediment to the oceans, Journal of Geology 91, 1–21.

    Article  Google Scholar 

  • Molnar, P. and England, P. (1990) Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg? Nature 346, 29–34.

    Article  Google Scholar 

  • Molnar, P. and Tapponnier, P. (1975) Cenozoic tectonics of Asia: Effects of a continental collision, Science 189, 419–426.

    Article  Google Scholar 

  • Montgomery, D.R. (1994) Valley incision and uplift of mountain peaks, Journal of Geophysical Research 99, 13913–13922.

    Article  Google Scholar 

  • Naeser, C.W. (1976) Fission Track Dating, U. S. Geological Survey, Denver.

    Google Scholar 

  • Naeser, C.W. and Faul, H. (1969) Fission track annealing in apatite and sphene, Journal of Geophysical Research 74, 705–710.

    Article  Google Scholar 

  • Peacock, S. (1995) Calculating exhumation rates from thermochronologic data, Transactions of the American Geophysical Union, Eos 76, F569.

    Google Scholar 

  • Raymo, M.E. and Ruddiman, W.F. (1992) Tectonic forcing of late Cenozoic climate change, Nature 359, 117–122.

    Article  Google Scholar 

  • Raymo, M.E., Ruddiman, W.F., and Froelich, P.N. (1988) Influence of late Cenozoic mountain building on ocean geochemical cycles, Geology 16, 649–653.

    Article  Google Scholar 

  • Rockwell, T.K. (1988) Neotectonics of the San Cayetano fault, California, Geological Society of America Bulletin 100, 500–513.

    Article  Google Scholar 

  • Rockwell, T.K., Keller, E.A., Clark, M.N., and Johnson, D.L. (1984) Chronology and rates of faulting of Ventura River terraces, California, Geological Society of America Bulletin 95, 1466–1474.

    Article  Google Scholar 

  • Ruddiman, W.F. and Kutzbach, J.E. (1989) Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southeast Asia and the American southwest, Journal of Geophysical Research 94, 18409–18427.

    Article  Google Scholar 

  • Shackleton, N.J. (1984) Oxygen isotope evidence for Cenozoic climate change, in P. Brenchley (ed.), Fossils and Climate, Wiley, London, pp. 27–34.

    Google Scholar 

  • Sieh, K.E. and Jahns, R.H. (1984) Holocene activity on the San Andreas fault at Wallace Creek, California, Geological Society of America Bulletin 95, 883–896.

    Article  Google Scholar 

  • Small, E.E. and Anderson, R.S. (1995) Geomorphically driven late Cenozoic rock uplift in the Sierra Nevada, California, Science 270, 277–280.

    Article  Google Scholar 

  • Smith, D.C. (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics, Nature 310, 641–644.

    Article  Google Scholar 

  • Stock, J. and Molnar, P. (1982) Uncertainties in the relative positions of the Australia, Antarctica, Lord Howe, and Pacific plates since the late Cretaceous, Journal of Geophysical Research 87, 4697–4714.

    Article  Google Scholar 

  • Stüwe, K., White, L., and Brown, R. (1994) The influence of eroding topography on steady-state isotherms. Application to fission-track analysis, Earth and Planetary Science Letters 124, 63–74.

    Article  Google Scholar 

  • Summerfield, M. (1991) Global Geomorphology: an Introduction to the Study of Landforms, Wiley, New York.

    Google Scholar 

  • Summerfield, M. and Hulton, N.J. (1994) Natural controls of fluvial denudation rates in major world drainage basins, Journal of Geophysical Research 99, 13,871–13,883.

    Article  Google Scholar 

  • Tippett, J.M. and Kamp, P.J.J. (1993) Fission track analysis of the Late Cenozoic vertical kinematics of continental pacific crust, South Island, New Zealand, Journal of Geophysical Research 98, 16119–16148.

    Article  Google Scholar 

  • Trimble, D.E. (1980) Cenozoic tectonic history of the Great Plains contrasted with that of the southern Rocky Mountains; a synthesis, Mountain Geologist 17, 59–69.

    Google Scholar 

  • Wagner, G.A. (1968) Fission track dating of apatites, Earth and Planetary Science Letters 4, 411–415.

    Article  Google Scholar 

  • Walcott, R.I. (1978) Geodetic strains and large earthquakes in the axial tectonic belt of North Island, New Zealand, Journal of Geophysical Research 100, 8221–8232.

    Google Scholar 

  • Weiland, R. and Cloos, M. (1996) Pliocene-Pleistocene asymmetric unroofing of the Irian fold belt, Irian Jaya, Indonesia: apatite fission-track thermochronology, Geologic Society of America Bulletin 108, 1438–1449.

    Article  Google Scholar 

  • Weissel, J.K., Taylor, B., and Karner, G.D. (1982) The opening of the Woodlark Basin, subduction of the Woodlark spreading center, and the evolution of Melanesia since mid-Pliocene time, Tectonophysics 87, 253–277.

    Article  Google Scholar 

  • Winslow, D.M., Chamberlain, C.P., and Zeitler, P.K. (1995) Metamorphism and melting of the lithosphere due to rapid denudation, Nanga Parbat Massif Himalaya, Journal of Geology 103, 395–409.

    Article  Google Scholar 

  • Wolf, R.A., Farley, K.A., and Silver, L.T. (1997) Assessment of (U-Th)/He thermochronometry: the low-temperature history of the San Jacinto mountains, California, Geology 25, 64–68.

    Google Scholar 

  • Zeitler, P.K. (1985) Cooling history of the NW Himalaya, Pakistan, Tectonics 4, 127–151.

    Article  Google Scholar 

  • Zeitler, P.K., Chamberlain, C.P., and Smith, H. (1993) Synchronous anatexis, metamorphism, and rapid denudation at Nanga Parbat (Pakistan Himalaya), Geology 21, 347–350.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blythe, A.E. (1998). Active Tectonics and Ultrahigh-Pressure Rocks. In: Hacker, B.R., Liou, J.G. (eds) When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Petrology and Structural Geology, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9050-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9050-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4028-2

  • Online ISBN: 978-94-015-9050-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics