Skip to main content

Biospecific Interactions Measured by Capillary Electrophoresis

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 510))

Abstract

A characterization of how biomolecules interact combined with a knowledge of their concentration, distribution, environment, and regulation of synthesis is required to understand how biological systems work. The characterization of molecular interactions involves demonstration of binding, identification of binding sites and estimation of quantitative parameters such as binding strength, rate constants, and binding stoichiometry. Equilibrium binding constants are informative regarding the physiological importance of a given acceptor-ligand interaction and various methods (TABLE 1) have been devised for the measurement of this parameter. All methods listed may allow for determination of binding constants but some are more widely applicable than others. The ideal method should be applicable to a wide range of interacting biomolecules under physiological conditions using low amounts of native material at high precision and speed. Of the methods listed in TABLE 1 only mass spectrometry (MS) and capillary electrophoresis (CE) are in principle applicable for the study of native and not necessarily purified biomolecules using minute amounts of material. However, the analytical conditions in the two methods are quite different and none of the methods can be said to be generally applicable even though there are now many examples of the uses of MS (this book) and CE (TABLE 2) for the measurement of various biospecific interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nielsen, R. G., Rickard, E. C., Santa, P. F., Sharknas, D. A., and Sittaampalam, G. S. (1991) Separation of antibody-antigen complexes by capillary zone electrophoresis, isoelectric focusing and high-performance size-exclusion chromatography, J. Chromatogr. 539, 177–185.

    Article  PubMed  CAS  Google Scholar 

  2. Schultz, N. M., Huang, L., and Kennedy, R. T. (1995) Capillary electrophoresis-based immunoassay to determine insulin content and insulin seretion from single islets of Langerhans, Anal. Chem. 67, 924–929.

    Article  PubMed  CAS  Google Scholar 

  3. Heegaard, N. H. H., Olsen, D. T., and Larsen, K.-L. P. (1996) Immuno-capillary electrophoresis for the characterization of a monoclonal antibody against DNA, J. Chromatogr. (in press)

    Google Scholar 

  4. Mammen, M., Gomez, F. A., and Whitesides, G. M. (1995) Determination of the binding of ligands containing the N-2,4-Dinitrophenyl group to bivalent monoclonal rat anti-DNP antibody using affinity capillary electrophoresis, Anal. Chem. 67, 3526–3535.

    Article  PubMed  CAS  Google Scholar 

  5. Chu, Y.-H., Lees, W. J., Stassinopoulus, A., and Walsh, C. T. (1994) Using affinity capillary electrophoresis to determine binding stoichiometries of protein-ligand interactions, Biochemistry 33, 10616–10621.

    Article  PubMed  CAS  Google Scholar 

  6. Heegaard, N. H. H. (1994) Determination of antigen-antibody affinity by immuno-capillary electrophoresis, J. Chromatogr. 680, 405–412.

    Article  CAS  Google Scholar 

  7. Shimura, K. and Kasai, K. (1995) Determination of the affinity constants of Concanavalin A for monosaccharides by fluorescence affinity probe capillary electrophoresis, Anal. Biochem. 227, 186–194.

    Article  PubMed  CAS  Google Scholar 

  8. Honda, S., Taga, A., Suzuki, K., Suzuki, S., and Kakehi, K. (1992) Determination of the association constant of monovalent mode protein-sugar interaction by capillary zone electrophoresis, J. Chromatogr. 597, 377–382.

    Article  PubMed  CAS  Google Scholar 

  9. Heegaard, N. H. H. and Robey, F. A. (1993) A capillary electrophoresis-based assay for the binding of Cal’ and phosphorylcholine to human C-reactive protein, J. Immunol. Methods 166, 103–110.

    Article  PubMed  CAS  Google Scholar 

  10. Kajiwara, H. (1991) Application of high-performance capillary electrophoresis to the analysis of aonformation and interaction of metal-binding proteins, J. Chromatogr. 559, 345–356.

    Article  CAS  Google Scholar 

  11. Heegaard, N. H. H. and Robey, F. A. (1992) Use of capillary zone electrophoresis to evaluate the binding of anionic carbohydrates to synthetic peptides derived from serum amyloid P component, Anal. Chem. 64, 2479–2482.

    Article  PubMed  CAS  Google Scholar 

  12. Heegaard, N. H. H., Mortensen, H. D., and Roepstorff, P. (1995) Demonstration of a heparin-binding site in serum amyloid P component using affinity capillary electrophoresis as an adjunct technique, J. Chromatogr. 717, 83–90.

    Article  CAS  Google Scholar 

  13. Heegaard, N. H. H. and Roepstorff, P. (1995) Preparative capillary electrophoresis and mass spectrometry for the identification of a putative heparin-binding site in amyloid P component, J. Cap. Elec. 2, 219–223.

    CAS  Google Scholar 

  14. Chu, Y.-H., Avila, L. Z., Biebuyck, H. A., and Whitesides, G. M. (1992) Use of affinity capillary electrophoresis to measure binding constants of ligands to proteins, J. Med. Chem. 35, 2915–2917.

    Article  PubMed  CAS  Google Scholar 

  15. Chu, Y.-H., Avila, L. Z., Biebuyck, H. A., and Whitesides, G. M. (1993) Using affinity capillary electrophoresis to identify the peptide in a peptide library that binds most tightly to vancomycin, J. Org . Chem. 58, 648–652.

    Article  CAS  Google Scholar 

  16. Chu, Y.-H. and Whitesides, G. M. (1992) Affinity capillary electrophoresis can simultaneously measure binding constants of multiple peptides to vancomycin, J. Org . Chem. 57, 3524–3525.

    Article  CAS  Google Scholar 

  17. Baba, Y., Tsuhako, M., Sawa, T., Akashi, M., and Yashima, E. (1992) Specific base recognition of oligodeoxynucleotides by capillary affinity gel electrophoresis using polyacrylamide-poly(9-vinyladenine) conjugated gel, Anal. Chem. 64, 1920–1925.

    Article  PubMed  CAS  Google Scholar 

  18. Guttman, A. and Cooke, N. (1991) Capillary gel affinity electrophoresis of DNA fragments, Anal. Chem. 63, 2038–2042.

    Article  PubMed  CAS  Google Scholar 

  19. Xian, J., Harrington, M. G., and Davidson, E. H. (1996) DNA-protein binding assays from a single sea urchin egg: A high-sensitivity capillary electrophoresis method, Proc. Natl. Acad. Sci. USA 93, 86–90.

    Article  PubMed  CAS  Google Scholar 

  20. Ljungberg, H. and Nilsson, S. (1995) Protein-based capillary affinity gel electrophoresis for chiral separation of ß-adrenergic blockers, J. Liq. Chromatogr. 18, 3685–3698.

    Article  CAS  Google Scholar 

  21. Barker, G. E., Russo, P., and Hartwick, R. A. (1992) Chiral separation of leucovorin with bovine serum albumin using affinity capillary electrophoresis, Anal. Chem. 64, 3024.

    Article  PubMed  CAS  Google Scholar 

  22. Tiselius, A. (1937) A new apparatus for electrophoretic analysis of colloidal mixtures, Trans. Faraday Soc. 33, 524–531.

    Article  CAS  Google Scholar 

  23. Mikkers, F. E. P., Everaerts, F. M., and Verheggen, T. P. E. M. (1979) High performance zone electrophoresis, J. Chromatogr. 169, 11–20.

    Article  CAS  Google Scholar 

  24. Jorgenson, J. W. and Lukacs, K. D. (1981) Zone electrophoresis in open-tubular glass capillaries, Anal. Chem. 53, 1298–1302.

    Article  CAS  Google Scholar 

  25. Landers, J. P., Oda, R. P., Spelsberg, T. C., Nolan, J. A., and Ulfelder, K. J. (1993) Capillary electrophoresis: A powerful microanalytical technique for biologically active molecules, Biotechniques 14, 98–111.

    PubMed  CAS  Google Scholar 

  26. Grossman, P. D. (1992) Factors affecting the performance of capillary electrophoresis separations: Joule heating, electroosmosis, and zone dispersion, in P.D. Grossman and J.C. Colbum (eds.), Capillary Electrophoresis, Academic Press, Inc., San Diego, CA, pp. 3–43.

    Google Scholar 

  27. Xu, Y. (1995) Capillary electrophoresis, Anal. Chem. 67, 463R - 473R.

    Article  PubMed  CAS  Google Scholar 

  28. Kuhr, W. G. and Monnig, C. A. (1992) Capillary electrophoresis, Anal. Chem. 64, 389R - 407R.

    Article  CAS  Google Scholar 

  29. Guzman, N.A. (ed.) (1993) Capillary Electrophoresis Technology, Marcel Dekker, Inc., New York, NY.

    Google Scholar 

  30. Grossman, P.D. and Colburn, J.C. (1992) Capillary electrophoresis: Theory and practice, Academic Press, Inc., San Diego, CA.

    Google Scholar 

  31. Heegaard, N. H. H. and Robey, F. A. (1994) The emerging role of capillary electrophoresis as a tool for the study of biomolecular noncovalent interactions, American Lab. 26, T28 - X28.

    Google Scholar 

  32. Gordon, M. J., Huang, X., Pentoney, S. L.,Jr., and Zare, R. N. (1988) Capillary electrophoresis, Science 242, 224–228.

    Article  PubMed  CAS  Google Scholar 

  33. Cohen, A. S., Paulus, A., and Karger, B. L. (1987) High-performance capillary electrophoresis using open tubes and gels, Chromatographia 24, 15–24.

    Article  CAS  Google Scholar 

  34. Heegaard, N. H. H., Heegaard, P. M. H., Roepstorff, P., and Robey, F. A. (In press, 1996) Ligand binding sites in human serum amyloid P component, Eur. J. Biochem.

    Google Scholar 

  35. Stevens, S. Y., Swanson, P. C., and Glick, G. D. (1994) Application of the gel shift assay to study the affinity and specificity of anti-DNA antibodies, J. Immunol. Methods 177, 185–190.

    Article  PubMed  CAS  Google Scholar 

  36. Fried, M. G. (1989) Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay, Electrophoresis 10, 366–376.

    Article  PubMed  CAS  Google Scholar 

  37. Nedved, M. L. and Moe, G. R. (1995) in Techniques in Protein Chemistry VI (pp. 393400, Academic Press, Inc., San Diego, CA.

    Google Scholar 

  38. Takeo, K. and Kabat, E. A. (1978) Binding constants of dextran and isomaltose oligosaccharides to dextran-specific myeloma proteins determined by affinity electrophoresis, J. Immunol. 121, 2305–2310.

    PubMed  CAS  Google Scholar 

  39. Bog-Hansen, T. C., Bjerrum, O. J., and Ramlau, J. (1975) Detection of biospecific interaction during the first dimension electrophoresis in crossed immunoelectrophoresis, Scand. J. Immunol. 4, supp1. 2, 141–147.

    Article  Google Scholar 

  40. Bog-Hansen, T. C. and Takeo, K. (1980) Determination of dissociation constants by affinity electrophoresis: Complexes between human serum proteins and concanavalin A, Electrophoresis 1, 67–71.

    Article  Google Scholar 

  41. Horejsf, V. (1979) Some theoretical aspects of affinity electrophoresis, J. Chromatogr. 178, 1–13.

    Article  Google Scholar 

  42. Takeo, K. and Nakamura, S. (1972) Dissociation constants of glucan phosphorylases of rabbit tissues studied by polyacrylamide gel disc electrophoresis, Arch. Biochem. Biophys. 153, 1–7.

    Article  PubMed  CAS  Google Scholar 

  43. Hardingham, T. E. and Fosang, A. J. (1992) Proteoglycans: many forms and many functions, FASEB J. 6, 861–870.

    PubMed  CAS  Google Scholar 

  44. Scatchard, G. (1949) The attraction of proteins for small molecules and ions, Ann. N. Y. Acad. Sci. 51, 660–672.

    Article  CAS  Google Scholar 

  45. Matousek, V. and Horejsf, V. (1982) Affinity electrophoresis: A theoretical study of the efffects of the kinetics of protein-ligand complex formation and dissociation reactions, J. Chromatogr. 245, 271–290.

    Article  CAS  Google Scholar 

  46. Avila, L. Z., Chu, Y.-H., Blossey, E. C., and Whitesides, G. M. (1993) Use of affinity capillary electrophoresis to determine kinetic and equilibrium constants for binding of arylsulfonamides to bovine carbonic anhydrase, J. Med. Chem. 36, 126–133.

    Article  PubMed  CAS  Google Scholar 

  47. Takeo, K. (1987) Affinity electrophoresis, in A. Chrambach, M.J. Dunn, and B.J. Radola (eds.) Advances in electrophoresis, vol. 1, VCH Verlag, Weinheim, pp. 229–279.

    Google Scholar 

  48. Heegaard, N. H. H. (1994) Characterization of biomolecules by electrophoretic analysis of reversible interactions, Appl. Timor. Electrophoresis 4, 43–63.

    CAS  Google Scholar 

  49. Dowd, J. E. and Riggs, D. S. (1965) A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations, J. Biol. Chem. 240, 863–869.

    PubMed  CAS  Google Scholar 

  50. Dixon, M. and Webb, E. C. (1979) Enzymes, p. 60, Longman Group Ltd., London.

    Google Scholar 

  51. Cantor, C. R. and Schimmel, P. R. (1980) Biophysical Chemistry. Part III: The behavior of biological macromolecules, p. 897, W.H.Freeman and Co., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heegaard, N.H.H. (1998). Biospecific Interactions Measured by Capillary Electrophoresis. In: Ens, W., Standing, K.G., Chernushevich, I.V. (eds) New Methods for the Study of Biomolecular Complexes. NATO ASI Series, vol 510. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9046-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9046-4_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5017-5

  • Online ISBN: 978-94-015-9046-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics