Skip to main content

Non-Covalent Hetero- and Homo-Oligomeric Protein Complexes Reassociate Differentially during MALDI-MS Analysis

  • Chapter
New Methods for the Study of Biomolecular Complexes

Part of the book series: NATO ASI Series ((ASIC,volume 510))

  • 145 Accesses

Abstract

MALDI-MS (matrix assisted laser desorption ionization mass spectrometry) may become a powerful tool in biochemistry in view of its accurate measurement of molecular mass of protein up to and above 300,000 Da (1). Noncovalent protein-protein interactions and subunit composition of protein multimers are the basis of molecular recognition and function in the biological world. As a result, detection of complex structure is an important problem. Conventional biochemical techniques used to detect noncovalent protein complexes include nondenaturing gel electrophoresis and size exclusion chromatography, which are useful in many cases, although neither determines molecular weight with accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siuzdak, G. (1994) The emergence of mass spectrometry in biochemical research, Proc. Natl. Acad. Sci. USA, 91, 11290-11297.

    Google Scholar 

  2. Nelson, R.W., Dogruel, D. and Williams, P. (1994) Mass determination of human immunoglobulin IgM using matrix-assisted laser desorption/ionization time-of-Flight mass spectrometry, Rapid Commun. Mass Spectrom., 8, 627 – 631.

    Article  PubMed  CAS  Google Scholar 

  3. Farmer, T.B. and Caprioli, R.M. (1991) Assessing the multimeric states of proteins: Studies using laser desorption mass spectrometry, Biol. Mass Spectrom., 20, 796 – 800.

    Article  PubMed  CAS  Google Scholar 

  4. Moniatte, M., van der Goot, F.G., Buckely, J.T., Pattus, F. and van Dorsselaer, A. (1996) Characterisation of heptameric pore-forming complex of the Aeromonas toxin aerolysin using MALDI-TOF mass spectrometry, FEBS Letters, 384, 269 – 272.

    Google Scholar 

  5. Flanagan, I.M., Wall, J.S., Capel, M.S., Schneider, D.K. and Shanklin, J. (1995) Scanning transmission electron microscopy and small-angle scattering provide evidence that native Escherichia coli CIpP is a tetradecamer with an axial pore, Biochemistry, 34, 10910 – 10917.

    Article  PubMed  CAS  Google Scholar 

  6. Maurizi, M.R., Thompson, M.W., Satyendra, K.S. and Seung-Ho, K. (1994) Endopeptidase Clp: ATP-dependant Clp protease from Escherichia coli, Methods in Enzymology, Academic Press, New York, 244, 314 – 331.

    CAS  Google Scholar 

  7. Milner, J. and Medcalf, E.A. (1991) Cotranslatiion of activated mutant p53 with wild type drives the wild type p53 protein into the mutant conformation, Cell, 65, 765 – 774.

    Article  PubMed  CAS  Google Scholar 

  8. Stenger, J.E., Tegtmeyer, P., Mayr, G.A., Reed, M., Wang, Y., Wang, P., Hough, P.V.C. and Mastrangelo, I.A. (1994) p53 oligomerization and DNA looping are linked with transcriptional activation, EMBO J.,13, 60116020.

    Google Scholar 

  9. Lee, S., Elenbaas, B., Levine, A. and Griffith, J. (1995) p53 and its 14kDa c-terminal domain recognize primary DNA in the form of insertion/deletion mismatches, Cell, 81, 1013 – 1020.

    Google Scholar 

  10. Cho, Y., Gorina, S., Jeffery, P.D. and Pavletich, N.K. (1994) Crystal structure of p53 tumor suppressor-DNA complex: understanding tumorigenic mutations, Science, 265, 346 – 355.

    Article  PubMed  CAS  Google Scholar 

  11. Lee, W., Harvey, T.S., Yin, Y., Yau, P, Litchfield, D. and Arrowsmith, C.H. (1994) Solution structure of the tetrameric minimum transforming domain of p53, Nature Structursl Biology, 1, 877 – 890.

    Article  CAS  Google Scholar 

  12. Clore, G.M., Omichinski, J.G., Kazuyasu, S., Zambrano, N., Sakamoto, H., Appella, E. and Gronenbon A.M. (1994) High-resolution structure of the oligomerization domain of p53 by multidimensional NMF Science, 265, 386 – 391.

    Article  PubMed  CAS  Google Scholar 

  13. Wobbe, C.R., Weissbach, L., Boroweic, J.A., Dean, F.B., Musakami, Y., Bullock, P. and Hurwitz, J. (1987) Replication of simian virus 40 origin-containing DNA in-vitro with purified proteins, Proc. Natl. Acad. Sci. USA, 84, 1834–1838.

    Article  PubMed  CAS  Google Scholar 

  14. Heyer, W.D., Rao, M.R.S., Erdile, L.F., Kelly, T.J. and Kolodner, R.D. (1990) An essential Sacchacomyces cerevisiae single stranded DNA binding protein is homologous to the large subunit of RP-A, EMBO J., 9, 2321–2329.

    PubMed  CAS  Google Scholar 

  15. Coverly, D., Kenny, M.K., Munn, M., Rupp, W.D., Lane, D.P. and Wood, R.D. (1991) Requirement for the replication protein SSB in human DNA excision repair, Nature, 349, 538–541.

    Article  Google Scholar 

  16. Brill. S.J. and Stillman, B. (1991) Replication factor-A from Saccaromyces cerevisiae is encoded by thre essential genes and coordinately expxressed at s phase, Genes Dev. 5, 1589 – 1600.

    Article  Google Scholar 

  17. Stigger, E., Dean, F.B., Hurwitz, J. and Lee, S-H. (1994) Reconstitution of functional human single stranded DNA binding protein from individual subunits expressed by baculovirus, Proc. Natl. Acad. Sci. USA, 91, 579 583.

    Google Scholar 

  18. Henricksen, L.A., Umbricht, C.B. and Wold, M.S. (1994) Recombinant replication protein a: expression complex formation, and functional characterization, J. Biol. Chem., 269, 11121–11132.

    Google Scholar 

  19. Bell, S.P. and Stillman, B. (1992) ATP-dependant recognition of eukaryotic origins of DNA replication by a multiprotein complex, Nature, 357, 128–134.

    Article  PubMed  CAS  Google Scholar 

  20. Diffley, J.F.X. and Cocker, J.H. (1992) Protein-DNA interactions at a yeast replication origin, Nature 357, 169–172.

    Article  PubMed  CAS  Google Scholar 

  21. Donovan, S. and Diffley, J.F.X. (1996) Replication origins in eukaryotes, Curr. Opin. Gen. Devel. 6, 203207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bloom, B.R., Iden, C.R., Mastrangelo, I.A. (1998). Non-Covalent Hetero- and Homo-Oligomeric Protein Complexes Reassociate Differentially during MALDI-MS Analysis. In: Ens, W., Standing, K.G., Chernushevich, I.V. (eds) New Methods for the Study of Biomolecular Complexes. NATO ASI Series, vol 510. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9046-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9046-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5017-5

  • Online ISBN: 978-94-015-9046-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics