Skip to main content

Use of the Cambridge Structural Database to Study Non-Covalent Interactions: Towards a Knowledge Base of Intermolecular Interactions

  • Chapter
  • 220 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 352))

Abstract

A knowledge of the preferred non-covalent interaction modes of molecules, through their functional substructures, is important to the design of novel bioactive molecules. Such knowledge permits us to model the interactions of putative bioactives at known binding sites, or to make inferences about binding site structure from the structures of known bioactives. Thus a protein-ligand complex can be described as an assembly of covalently bonded units or ions that is organised according to the diverse weak forces that govern non-covalent interactions: a phrase that accurately defines a supermolecule [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lehn, J.-M. (1988) Supramolecular Chemistry — Scope and Perspectives: Molecules, Supermolecules and Molecular Devices, Angew.Chem. (Int.Ed.Engl.), 27, 90–112.

    Google Scholar 

  2. Klebe, G. (1994). The use of composite crystal field environments in molecular recognition and the de novo design of protein ligands. J.Mol.Biol., 237, 212–235.

    Article  CAS  Google Scholar 

  3. Taylor, R., Mullaley, A. and Mullier, G.W. (1990) Use of Crystallographic Data in Searching for Isosteric Replacements: Composite Crystal-Field Environments of Nitro and Carbonyl Groups, Pestic. Sci., 29, 197–213.

    Article  CAS  Google Scholar 

  4. Desiraju, G.R. (1991) Crystal Engineering: The Design of Organic Solids, Academic Press, New York.

    Google Scholar 

  5. Desiraju, G.R. (1995) Supramolecular Synthons in Crystal Engineering — A New Organic Synthesis, Angew.Chem.Int.Ed.Engl., 34, 2311–2327.

    Article  CAS  Google Scholar 

  6. Jeffrey, G.A. and Saenger, W. (1991) Hydrogen Bonding in Biological Structures, Springer Verlag, Berlin.

    Book  Google Scholar 

  7. Lommerse, J.P.M., Stone, A.J., Taylor, R. and Allen, F.H. (1996). The Nature and Geometry of Intermolecular Interactions between Halogens and Oxygen or Nitrogen J.Amer.Chem.Soc., In Press.

    Google Scholar 

  8. Hayes, I.C. and Stone, A.J. (1984) Intermolecular Perturbation Theory, Mol.Phys., 53, 84–98.

    Google Scholar 

  9. Allen, F.H., Bird, C.M. and Rowland, R.S. (1995) The Hydrogen-Bond Acceptor Properties of ‘Univalent’ Sulphur (X≡S), Acta Crystallogr., Submitted.

    Google Scholar 

  10. Taylor, R. and Kennard, O. (1982) Crystallographic Evidence for the Existence of C-H...O, C-H,N and C-H...Cl Hydrogen Bonds,...J.Am.Chem.Soc., 104, 5063–5070.

    Article  CAS  Google Scholar 

  11. Desiraju, G.R. (1991) The C-H...O Hydrogen Bond in Crystals: What Is It?, Acc. Chem. Res., 24, 290–296.

    Article  CAS  Google Scholar 

  12. Desiraju, G.R. and Murty, B.N. (1987) Correlations between Crystallographic and Spectroscopic Properties for C-H...O Bonds in Terminal Acetylenes, Chem.Phys.Lett., 139, 360–361.

    Article  CAS  Google Scholar 

  13. Pedireddi, V.R. and Desiraju, G.R. (1992) A Crystallographic Scale of Carbon Acidity, J. Chem. Soc., Chem.Commun., pp 988–990.

    Google Scholar 

  14. Joris, L., Schleyer, P. von R. and Gleiter, R. (1968) Cyclopropane Rings as Proton-Acceptor Groups in Hydrogen Bonding, J.Am.Chem.Soc., 90, 327–336.

    Article  CAS  Google Scholar 

  15. Viswamitra, M.A., Radhakrishnan, R., Bandekar, J. and Desiraju, G.R. (1993) Evidence for O-H...O and N-H C Hydrogen Bonding in Crystalline Alkynes, Alkenes and Aromatics, J.Am.Chem.Soc., 115, 4868–4869.

    Article  CAS  Google Scholar 

  16. Steiner, T. (1995) Cooperative C≡ C-H...C=C-H Interactions: Crystal Structure of DL-Prop-2-ynylglycine and Database Study of Terminal Alkynes, J.Chemi.Soc., Chem.Commun., pp 95–96.

    Google Scholar 

  17. Steiner, T., Starikov, E.B., Amado, A.M. and Teixeira-Dias, J.J.C. (1995) Weak Hydrogen Bonding. Part 2. The Hydrogen Bonding Nature of Short C-H...π contacts: Crystallographic, Spectroscopic and Quantum Mechanical Studies of Some Terminal Alkynes, J. Chem. Soc., Perkin Trans. 2, pp 1321–1326.

    Google Scholar 

  18. Allen, F.H., Lommerse, J.P.M., Hoy, V.J., Howard, J.A.K. and Desiraju, G.R. (1995) The Hydrogen-Bond C-H Donor and π-Acceptor Characteristics of Three-Membered Rings, Acta Crystallogr., Submitted.

    Google Scholar 

  19. Brammer, L., Zhao, D., Ladipo, F.T. and Braddock-Wilking, T. (1995) Hydrogen bonds involving transition metal centres — a brief review. Acta Crystallogr., B51, 632–640.

    Article  Google Scholar 

  20. Gavezzotti, A. (1990) Packing analysis of organic crystals containing C=O and C=N groups. J.Phys. Chem. , 94, 4319–4325.

    Article  CAS  Google Scholar 

  21. Allen, F.H., Baalham, C.A., Lommerse, J.P.M. and Taylor, R. (1996) Crystallographic and Computational Studies on the Dipolar Interaction between Carbonyl Groups. Acta Cryst,. Section B, In Preparation.

    Google Scholar 

  22. Allen, F.H., Rowland, R.S., Fortier, S. and Glasgow, J.I. (1990) The Design of Intelligent Systems for Molecular Scene Analysis, Tetrahedron Computer Methodology, 3, 757–771.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cole, J.C., Lommerse, J.P.M., Rowland, R.S., Taylor, R., Allen, F.H. (1998). Use of the Cambridge Structural Database to Study Non-Covalent Interactions: Towards a Knowledge Base of Intermolecular Interactions. In: Codding, P.W. (eds) Structure-Based Drug Design. NATO ASI Series, vol 352. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9028-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9028-0_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5078-6

  • Online ISBN: 978-94-015-9028-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics