Skip to main content

Photosynthetic capacity, respiration and water use efficiency in Scots pine stands

  • Chapter
  • 79 Accesses

Part of the book series: Nutrients in Ecosystems ((NECO,volume 3))

Abstract

Air pollutants (O3, SO2, NOx) may affect the metabolic activity of leaves or needles, and organelles of plants, directly or indirectly by soil acidification and nutrient imbalance in particular in conifers: Many of publications refer to this phenomenon (e.g. Ulrich and Matzner, 1983; Ulrich et al., 1984; Lange et al., 1985; Schulze et al., 1989; Führer et al., 1993; Heber et al., 1994; other quotations ibid.). This were mainly short-term fumigation experiments, which could be used to detect causal biochemical mechanisms (Norby et al., 1989 regarding NO2; Pfanz and Heber, 1986 regarding SO2; Wallin and Skärby, 1992 regarding ozone; Heber et al., 1994 regarding interactions). In contrast to this, long-term investigations focusing on the pollutant concentrations as they normally occur in the field were conducted in rare cases only (Schulze et al., 1987; Keller and Hässler, 1986; Führer et al., 1993).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baly ECC. 1935. The kinetics of photosynthesis. Proc R Soc L Ser B. 117, 218–239.

    Article  CAS  Google Scholar 

  • Bannister TT. 1974. A general theory of steady state phytoplankton growth in a nutrient-saturated mixed layer. Limnol Oceanogr. 19, 457–473.

    Google Scholar 

  • Boutton TW, Flagler RB. 1990. Growth and water-use efficiency of shortleaf pine as affected by ozone and acid rain. Proceedings of the 83rd Annual Meeting and Exhibition of the Air and Waste Management Association 90 – 187.7. Air and Waste Management Association, Pittsburgh, PA.

    Google Scholar 

  • Caldwell MM. 1995. personal communication.

    Google Scholar 

  • Dizengremel P, Citerne A. 1988. Air pollutant effects on mitochondria and respiration. In: Air Pollution and Plant Metabolism. Eds. Schulte-Hostede S, Darall NM, Blank LW, Wellburn AR. Elsevier, London, 169–188.

    Google Scholar 

  • Dudel EG, Pietsch M, Solger A, Zentsch W 1995. Photosynthese, Atmung und Transpiration in Kiefernbeständen an der Schnittstelle Atmosphäre-Zweig unter abnehmender Immissionsbelastung. Eds. Hüttl RF, B Bellmann, and W Seiler. Atmosphärensanierung und Waldökosysteme Blottner-Verlag, Taunusstein, 87–126.

    Google Scholar 

  • Dudel EG, Federbusch U, Solger A. 1997. Variability and photosynthesis performance in pine stands: limits of the differentiation of site and air pollution-caused influences. Ecosys Suppl. 20, 37–46.

    Google Scholar 

  • Elsik CG, Flagler RB, Boutton TW. 1993. Carbon isotope composition and gas exchange of loblolly and shortleaf pine as affected by ozone and water stress. In: Stable Isotopes and Plant Carbon — Water Relations. Eds. JR Ehleringer, AE Hall, GD Farquhar. Academic Press, Inc.

    Google Scholar 

  • Faensen-Thiebes A, Cornelius R, Meyer G, Bornkamm R. 1989. Ecosystem study in a Central European pine forest. In: Coniferous Forest Ecology From An International Perspective. Eds. Nakagoshi N, Golley FB. SPB Academic Publishing by The Hague, The Netherlands, 137–150.

    Google Scholar 

  • Faensen-Thiebes A, Cornelius R. 1991. Modellierung des Gaswechsels der Kiefer in seiner Abhängigkeit von klimatischen Faktoren. Verhandlungen der Gesellschaft für Ökologie (Osnabrück, 1989), 19/111: 681–691.

    CAS  Google Scholar 

  • Fischer CH, Holl W 1991. Food reserves of Scots pine (Pinus sylvestris L.) Trees. 5, 1871–1895.

    Google Scholar 

  • Fraude H-J. 1987. Zur Anzahl der Nadeljahrgänge der Waldkiefer. Untersuchungen im Rahmen von Waldschadenserhebungen in Rheinland-Pfalz. Der Forst- und Holzwirt. 15, 415–417.

    Google Scholar 

  • Führer G, Payer H-D, Pfanz H. 1993. Effects of air pollutants on the photosynthetic capacity of young Norway spruce trees. Response of single needle age classes during and after different treatments with O3, SO2 or NO2. Trees. 8, 85–92.

    Article  Google Scholar 

  • Gluch W. 1988. Zur Benadelung von Kiefern (Pinus sylvestris L.) in Abhängigkeit vom Immissionsdruck. Flora. 181, 395–407.

    Google Scholar 

  • Greitner CS, Winner WE. 1988. Increases in 13C values of radish and oybean plants caused by ozone. New Phytol. 108, 489–494.

    Article  CAS  Google Scholar 

  • Gussone HA. 1986. Wieviel Nadeljahrgänge sind normal? Der Forst- und Holzwirt. 15, 415–417.

    Google Scholar 

  • Heber U, Kaiser W, Luwe M et al. 1994. Air pollution, photosynthesis and forest decline: interactions and consequences. In: Ecophysiology of Photosynthesis. Eds. E-D Schulze, MM Caldwell. Ecol Stud. 100, 279–296.

    Google Scholar 

  • Heinsdorf D. 1993. The role of nitrogen in decling Scots pine forests (Pinus sylvestris L.) in the Lowland of East Germany. Water Air Soil Pollut. 69, 21–35.

    Article  CAS  Google Scholar 

  • Ingestad T. 1979. Mineral nutrient requirement of Pinus sylvestris and Pices abies seedlings. Physiol Plantarum. 45, 373–380.

    Article  CAS  Google Scholar 

  • Jandel Scientific. 1993. Bd. 1: Sigma Plot — Users Manual, Bd. 2: Sigma Plot — Transforms and Curve Fitting.

    Google Scholar 

  • Jassby AD, Platt T. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr. 21, 540–547.

    Article  CAS  Google Scholar 

  • Kandier O. 1992. The german forest decline situation: a complex desease or a complex of deseases. In: Forest Decline Concepts. Eds. Manion PD, Laechence D. ASP Press, St Paul, Minnesota, 59–84.

    Google Scholar 

  • Kandier O. 1993. The air pollution/forest decline connection: the Waldsterben theory refuted. Unasilva. 44, 39–48.

    Google Scholar 

  • Keller T, Häßler R. 1986. The influence of prolonged SO2 fumigation on the stomatal reaction of spruce. Eur J For Path. 16, 110–115.

    Article  CAS  Google Scholar 

  • Kriebitzsch W-U, Scholz F. 1996. Zur Wirkung erhöhter SO2 Konzentration auf den Gaswechsel von Fichtenklonen (Picea abies (L.) Karst.) aus dem Fichtelgebirge. Verhandlungen der Gesellschaft für Ökologie. 26, 121–126.

    CAS  Google Scholar 

  • Künstle E, Mitscherlich G. 1975. Photosynthese, Transpiration und Atmung in einem Mischbestand im Schwarzwald. III. Teil: Atmung. Allg Forst-u J-Ztg. 147(9), 169–177.

    Google Scholar 

  • Künstle E, Mitscherlich G. 1976. Photosynthese, Transpiration und Atmung in einem Mischbestand im Schwarzwald. IV. Teil: Bilanz. Allg Forst-u J-Ztg. 148(12), 227–239.

    Google Scholar 

  • Küppers M, Zech W, Schulze E-D, Beck E. 1985. CO2-Assimilation, Transpiration und Wachstum von Pinus sylvestris L. bei unterschiedlicher Magnesium-Versorgung. Forstw Cbl. 104, 23–36.

    Article  Google Scholar 

  • Lange OL, Gebel J, Walz H, Schulze E-D. 1985. Eine Methode zur raschen Charakterisierung der photosynthetischen Leistungsfähigkeit von Bäumen unter Freilandbedingungen — Anwendung zur Analyse neuartiger Waldschäden bei der Fichte. Forstw Cbl. 104, 186–198.

    Article  Google Scholar 

  • Lawton DL. 1993. Photosynthesis. Longman Sci. and Techn. Essex, UK.

    Google Scholar 

  • Lerch G. 1991. Pflanzenökologie. Teile I und II. Akademie-Verlag. Berlin.

    Google Scholar 

  • Linder S, Troeng E. 1981. The seasonal variation in stem and coarse root respiration of a 20-year-old Scots pine (Pinus sylvestris L.). In: Radial Growth in Trees. Ed. W Tranquillini. Mitteil der Forst Bundesversuchsanstalt, Wien. 142(1), 125–140.

    Google Scholar 

  • Lösch R, Schulze E-D. 1994. Internal coordination of plant responses to drought and evaporational demand. In: Ecophysiology of Photosynthesis. Eds. E-D Schulze, MM Caldwell. Ecol Stud. 100, 185–204.

    Google Scholar 

  • Lux H. 1965. Die großräumige Abgrenzung von Rauchschadenszonen im Einflußbereich des Industriegebietes um Bitterfeld. Wiss Zeitschr Techn Univ Dresden. 14(2), 433–442.

    Google Scholar 

  • Lux H, Stein G. 1977. Die forstlichen Immissionsschadgebiete im Lee des Ballungsraumes Halle und Leipzig. Hercynia. 14, 413–421.

    Google Scholar 

  • Marquardt W, Brüggemann E. 1995. Long-term trends in acidity of precipitation after longscale transport-effects of atmospheric rehabilitation in East-Germany. Water Air Soil Pollut. 85, 665–670.

    Article  CAS  Google Scholar 

  • Martin B, Bytnerowicz A, Thorstenson YR. 1988. Effects of air pollution on the composition of stable carbon isotopes, 13C, of leaves and on leaf injury. Plant Physiol. 88, 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Martin B, Sutherland EK. 1990. Air pollution in the past recorded in width and stable carbon isotope composition of annual growth rings of Douglas-fir. Plant Cell Environ. 13, 839–844.

    Article  CAS  Google Scholar 

  • Matyssek R. 1986. Carbon, water and nitrogen relations in evergreen and deciduous conifers. Tree Physiol. 2, 177–187.

    Article  CAS  PubMed  Google Scholar 

  • Matyssek R, Schulze E-D. 1988. Carbon uptake and respiration in aboveground of a Larix decidua x leptolepis tree. Trees. 2, 233–241.

    Article  Google Scholar 

  • Norby RJ, Weerasuriya Y, Hanson PJ. 1989. Induction of nitrate reductase activity in red spruce needles by NO2 and HNO3 vapor. Can J For Res. 19, 889–896.

    Article  CAS  Google Scholar 

  • Perterer J, Körner Ch. 1990. Das Problem der Bezugsgröße bei physiologisch-ökologischen Untersuchungen an Koniferennadeln. Forstw Cbl. 109, 220–241.

    Article  Google Scholar 

  • Pfanz H, Heber U. 1986. Buffer capacities of leaves, leaf cells, and leaf cell organelles in relation to fluxes of potentially acidic air pollutants. Plant Physiol. 81, 597–602.

    Article  CAS  PubMed  Google Scholar 

  • Pfanz H, Beyschlag W. 1993. Photosynthetic performance and nutrient status of Norway spruce [Picea abies (L.) Karst.] at forest sites in the Ore Mountains (Erzgebirge). Trees. 7, 115–122.

    Article  Google Scholar 

  • Platt T, Gallegos CL, Harrison WG. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res. 38, 687–701.

    Google Scholar 

  • Ratkowski DA. 1990. Handbook of nonlinear regression models. Marcel Dekker Inc., New York.

    Google Scholar 

  • Roberts J, Pitman RM, Wallace JS. 1982. A comparison of evaporation from stands of Scots pine and Corsican pine in Thetford Chase, East Anglia. J Appl Ecol. 19, 859–872.

    Article  Google Scholar 

  • Rust S, Lüttschwager D, Hüttl RF. 1995. Transpiration and hydraulic conductivity in three Scots pine (Pinus sylvestris L.) stands with different air pollution histories. Water Air Soil Pollut. 85, 1677–1682.

    Article  CAS  Google Scholar 

  • Sachs L. 1992. Angewandte Statistik. 7. völlig Überarb. Aufl., Springer, Berlin.

    Google Scholar 

  • Schaaf W, Weisdorfer M, Hüttl RF. 1995. Soil solution chemistry and element budgets of three Scots pine ecosystems along a deposition gradient in North-Eastern Germany. Water Air Soil Pollut. 85, 1197–1202.

    Article  CAS  Google Scholar 

  • Schaaf W, Weisdorfer M, Httl RF. 1997. Recovery of Scots pine ecosystems in NE-Germany affected by long-term pollution with SO2, N, and alkaline dust. Geochim Cosmochim Acta, in press.

    Google Scholar 

  • Scholz F. 1984. Wirken Luftverunreinigungen auf die genetische Struktur von Waldbaumpopulationen? Forstarchiv. 55(2), 43–45.

    Google Scholar 

  • Schulz H, Huhn G, Jung K, Härtung S, Schürmann G. 1995. Biochemical responses in needles of Scots pine (Pinus sylvestris) from air polluted field sites in Eastern Germany Air Pollution III. Volume 4: Observation and Simulation of Air Pollution: Results from SANA and EUMAC. Eds. A Ebel, N Moussiopoulos. 33–42. Computational Mechanics Publications, Southhampton, Boston.

    Google Scholar 

  • Schulze E-D, Oren R, Zimmermann R. 1987. Die Wirkung von Immissionen auf 30jährige Fichten in mittleren Höhenlagen des Fichtelgebirges auf Phyllit. Allg Forstzeitg. 27/28/29, 725–729.

    Google Scholar 

  • Schulze E-D, Lange OL, Oren R. 1989. Forest decline and air pollution. Ecol Stud. 77, Springer, Berlin-Heidelberg-New York.

    Book  Google Scholar 

  • Seber and Wild. 1989. Nonlinear Regression. Wiley and Sons, New York.

    Book  Google Scholar 

  • Smith WH. 1990. Air Pollution and Forests. Interactions between Air Contaminants and Forest Ecosystems. 2nd ed. Springer, New York-Berlin-Heidelberg.

    Google Scholar 

  • SPSS 6.1 Guide to Data Analysis. 1995. Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Troeng E, Lindner S. 1982. Gas exchange in a 20-year-old stand of Scots pine. II Variation in net photosynthesis and transpiration within and between trees. Physiol Plant. 54, 15–23.

    Article  CAS  Google Scholar 

  • Ulrich B, Matzner E. 1983. Ökosystemare Wirkungsketten beim Wald- und Baumsterben. Der Forst- und Holzwirt. 18, 468–474.

    Google Scholar 

  • Umweltbundesamt and Senatsverwaltung für Stadtentwicklung und Umweltschutz (Hrsg.), 1990 Ballungsraumnahe Waldökosysteme. Abschlußbericht. 258 S.

    Google Scholar 

  • Ulrich B, Pirouzpanah D, Murach D. 1984. Beziehungen zwischen Bodenversauerung und Wurzelentwicklung von Fichten mit unterschiedlich starken Schadsymptomen. Forstarchiv. 55, 127–134.

    Google Scholar 

  • Vanninen P, Ylitalo H, Sievänen R, Mäkelä A. 1996. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees. 10, 231–238.

    Google Scholar 

  • Von Caemmerer, Farquhar GD. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta. 153, 376–387.

    Article  Google Scholar 

  • Wallin G, Skärby L. 1992. The influence of ozone on the stomatal and non-stomatal limitation of photosynthesis in Norway spruce, Picea abies (L.) Karst, exposed to soil moisture defizit. Trees. 6, 128–136.

    Google Scholar 

  • Webb WL, Newton N, Starr D. 1974. Carbon dioxide exchange of Alnus rubra: A mathematical model. Oecologica. 17, 281–291.

    Article  Google Scholar 

  • Weidmann P, Einig W, Egger B, Hampp E. 1990. Contents of ATP and ADP in needles of Norway spruce in relation to their development, age, and to symptoms of forest decline. Trees. 4, 68–74.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dudel, G.E., Federbusch, U., Solger, A. (1998). Photosynthetic capacity, respiration and water use efficiency in Scots pine stands. In: Hüttl, R.F., Bellmann, K. (eds) Changes of Atmospheric Chemistry and Effects on Forest Ecosystems. Nutrients in Ecosystems, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9022-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9022-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5224-7

  • Online ISBN: 978-94-015-9022-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics