Skip to main content

Techniques for Addressing Spatial Detail in Forest Planning

  • Chapter
Book cover Assessment of Biodiversity for Improved Forest Planning

Part of the book series: Forestry Sciences ((FOSC,volume 51))

Abstract

Specialized model solution approaches can be designed for forest management scheduling problems by utilizing an understanding of the problem. A specialized decomposition approach has made it possible to address larger problems. It has proven successful in applications. Concepts of moving windows from geographic information systems can be combined with dynamic programming (DP) techniques to address adjacency considerations in large problems. This DP approach and the specialized decomposition approach can likely be combined to help identify ways of sustaining both timber production and forest-wide spatial conditions such as the amount of forest edge or interior space. The specialized decomposition approach has been expanded to address spatial interactions between timber markets. Similar expansions seem plausible to address broader spatial environmental concerns related to forest biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borges, J. 1994. A modelling approach to spatial management constraints in forest management. PhD dissertation. University of Minnesota. 117 pp.

    Google Scholar 

  • Church, R., A. Murray and K Barber. 1994. Designing a hierarchical planning model for USDA Forest Service planning. pp 401–409 in Proceedings of the 1994 Symposium on Systems Analysis in Forest Resources, Sept. 6–9, 1994, Pacific Grove, CA 482 p.

    Google Scholar 

  • Davis, L. S. and K. N. Johnson. 1987. Forest management. McGraw-Hill, New York. 790 p.

    Google Scholar 

  • Fisher, M. 1981. The Lagrangian relaxation method for solving integer programming problems. Management Science 27 (1): 1–18.

    Article  Google Scholar 

  • Hoganson, H. J. Borges and D. Rose. 1994. A dynamic programming approach to solving adjacency problems. in forest management. Paper presented at the 1994 Symposium on Systems Analysis in Forest Resources, September 6–9, 1994, Pacific Grove, California.

    Google Scholar 

  • Hoganson. H. and D. Kapple. 1995. Estimating impacts of extended rotation forestry. Final research report submitted to the Minnesota Department of Natural Resources. 170 pp.

    Google Scholar 

  • Hoganson, H. M. and D. C. Kapple. 1991. DTRAN 1.0: A multi-market timber supply model. College of Natural Resources and Agricultural Experiment Station, Department of Forest Resources Staff Paper Series Report No. 82, University of Minnesota, St. Paul. 66 pp.

    Google Scholar 

  • Hoganson, H., and M. McDill. 1993. Relating reforestation investments in northern Minnesota with forest industry needs, nontimber values and mitigation strategies. research report submitted to the Charles K. Blandin Foundation. 232 p.

    Google Scholar 

  • Hoganson, H. M. and D. W. Rose. 1984. A simulation approach for optimal timber management scheduling. Forest Science. 30 (1): 220–238.

    Google Scholar 

  • Hoganson, H. M. and D. W. Rose. 1989. DUALPLAN version 1.0 users manual. College of Natural Resources and Agricultural Experiment Station, Department of Forest Resources Staff Paper Series Report No. 73, University of Minnesota, St. Paul. 48 pp.

    Google Scholar 

  • Jaakko Pöyry Consulting, Inc. 1994. Generic Environmental Impact Statement on Timber Harvesting and Forest Management in Minnesota. Tarrytown, NY: Jaakko Pöyry Consulting, Inc. 813 p.

    Google Scholar 

  • Jones, J., J. Meneghin, and M. Kirby. 1991. Formulating adjacency constraints in optimization models for scheduling projects in tactical planning. Forest Science. 37 (5): 1283–1297.

    Google Scholar 

  • Mladenoff, D., G. Host, J. Boeder and T. Crow. 1996. A spatial model of forest landscape disturbance, succession and management. in: Goodchild, M. et al. eds. GIS and Environmental Modeling: progress and research issues. Fort Collins CO: GIS World Books: 175–179.

    Google Scholar 

  • Murray, A. T. and R. L. Church. 1994. Adjacency constraint aggregation. pp 131–138 in Proceedings of the International Symposium on Systems Analysis and Management Decisions in Forestry. March 9–12, 193, Valdivia, Chile. 482 p.

    Google Scholar 

  • Nelson, J., and D. Errico. 1993. Multiple pass harvesting and spatial constraints: an old technique applied to a new problem. Forest Science. 39 (1): 1–15.

    Google Scholar 

  • Paredes V., G., and J. Brodie. 1989. Land value and the linkage between stand and forest level analyses. Land Economics. 65 (2): 158–166.

    Google Scholar 

  • Sessions J. and J. Sessions. 1988. Scheduling and network analysis program (SNAP). User’s Guide. Dept. of Forest Management. Oregon State University. Corvallis OR.

    Google Scholar 

  • Snyder, S. and C. ReVelle. 1996. The grid packing problem: selecting a harvest pattern in an area with forbidden regions. Forest Science. 42 (1): 27–34.

    Google Scholar 

  • Weintraub, A., F. Barahona and R. Epstein. 1994. A column generation algorithm for solving general forest planning problems with adjacency constraints. Forest Science. 40 (1): 142–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hoganson, H., Borges, J., Bradley, D. (1998). Techniques for Addressing Spatial Detail in Forest Planning. In: Bachmann, P., Köhl, M., Päivinen, R. (eds) Assessment of Biodiversity for Improved Forest Planning. Forestry Sciences, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9006-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9006-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4962-9

  • Online ISBN: 978-94-015-9006-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics