Formal Semantics, Geometry, and Mind

  • J. E. Fenstad
Part of the Philosophical Studies Series book series (PSSP, volume 72)


Standard theory of grammar postulates the existence of two modules, one being a conceptual module which includes what is often referred to as knowledge of the world, one being a computational module which is concerned with the constraints on our actual organization of discrete units, such as morphemes and words, into phrases. Much of current theory is a theory of the syntax/semantics interface, i.e. a theory of how to connect grammatical space (the computational module) with semantical space (the conceptual module). In addition there has always been much work on the structure of grammatical space. However, remarkably little work has been devoted to the structure of semantical space. Even the Montague grammarians rarely make any use of the structure of their models; it is almost always possible to stay at the level of lambda-terms.


Color Space Noun Phrase Natural Kind Order Logic Formal Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J.A. (1995) An Introduction to Neural Networks, MIT Press, Cambridge, Mass.Google Scholar
  2. Amit, D.J. (1989) Modeling Brain Function, Cambridge University Press, Cambridge.Google Scholar
  3. Barwise, J. and Etchemendy, J. (1991) Visual Information and Valid Reasoning, in W. Zimmenmann and S. Cunningham (eds.). Visualization in Mathematics, Math. Ass. America, Washington DC.Google Scholar
  4. Barwise, J. and Perry, J. (1983) Situations and Altitudes, MIT Press, Cambridge, Mass.Google Scholar
  5. Changeux, J.P. and Dehaene, S. (1989) Neuronal Models of Cognitive Funotions, Cognition 33.Google Scholar
  6. Chomsky, N. (1965) Aspects of the Theory of Syntax, MIT Press, Cambridge. Mass.Google Scholar
  7. Churchland, P.C. and Sejnowski, T.J. (1992) The Computational Brain, MIT Press, Cambridge, Mass.Google Scholar
  8. Colban, E. (1987) Prepositional Phrases in Situation Schemata, Appendix A of Fenstad et al (1987).Google Scholar
  9. Dalrymple, M., Kanazawa, M., Mchombo, S. and Peters, S. (1994) What Do Reciprocals Mean?, in Proceedings of the Fourth Semantics and Linguistics theory Conference, Cornell University Working papers in Linguistics.Google Scholar
  10. Donald, M. (1990) Origin of the Modem Mind: Three Stages in the Evolution of Culture and Cognition, Harvard University Press. Cambridge, Mass.Google Scholar
  11. Donald, M. et al (1993) Precis and Discussion of Origin of the Modern Mind, Behavioral and Brain Sciences 16.Google Scholar
  12. Dyvik, H. (1993) Exploiting Structural Similarities in Machine Translation, Institute of Linguistics, University of Bergen.Google Scholar
  13. Fenstad, J. E. (1979) Models for Natural languages, in J. Hintikka et al (eds.), Essays in Mathematical and Philosophical Logic, D. Reidel Publ. Comp., Dordrecht.Google Scholar
  14. Fénstad, J.E., Halvorsen, P.K., Langholm, T., and van Benthem, J. (1987) Situations, Language and Logic, D. Reidel Publ. Comp., Dordrecht.Google Scholar
  15. Fenstad, J.E., Langholm, T., and Vestre, E. (1992) Representations and Interpretations, in M. Rosner and R. Johnson (eds.), Computational Linguistics and Formal Semantics, Cambridge University Press, Cambridge.Google Scholar
  16. Fenstad, J.E. (1996) Partiality, in J. van Benthem and A. ter Meulen (eds.), Handbook of Logic and Linguistics, North-Holland, Amsterdam.Google Scholar
  17. Rum, J. and Ziegler, M. (1980) Topological Model Theory, Springer Lecture Notes in mathematics. Springer-Verlag, Heidelberg.Google Scholar
  18. Gärdenfors, P. (1991) Framework for Properties, in L. Haaparanta et al (eds.), Language, Knowledge and Intenionality. Acta Philosophica Fennica 49, Helsinki.Google Scholar
  19. Gärdenfors, P. (1993) Conceptual Spaces as a Basis for Cognitive Semantics, Department of Philosophy, Lund University. Lund.Google Scholar
  20. Gärdenfors, P. (1994) Three Levels of Inductive Inference, in D. Prawitz et al (eds.), Logic, Methodology and Philosophy of Science IX, North Holland, Amsterdam.Google Scholar
  21. Habel, C. (1990) Propositional and Depictorial Representation of Spatial Knowledge: The Case of Path-Concepts, in R. Studer (ed.), Natural Language and Logic, Lecture Notes in Artificial Intelligence. Springer-Verlag, Heidelberg.Google Scholar
  22. Johnson-Laird, P.J. (1983) Mental Models, Cambridge University Press, Cambridge.Google Scholar
  23. Kamp, H. and Reyle, U. (1993) From Discourse to Logic, D. Reidel Publ. Comp., Dordrecht.Google Scholar
  24. Kaplan, R. and Bresnan, J. (1982) Lexical-Functional Grammar, in J. Bresnan (ed.), The Mental Representation of Grammatical Relations, MIT Press, Cambridge, Mass.Google Scholar
  25. Kempen, G. and Vosse, T. (1990) Incremental Syntactic Tree Formation in Human Sentence Processing, Connection Sciences 1.Google Scholar
  26. Kosslyn, W. and Koenig, O. (1992) Wet Minci The Free Press, New York. NY.Google Scholar
  27. Lakoff, G. (1987) Women, Fire and Dangerous Things, Chicago University Press, Chicago, Ill.Google Scholar
  28. Langacker, R.W. (1987 and 1991) Foundation of Cognitive Grammar, vols 1 and 2, Stanford University Press, Stanford, CA.Google Scholar
  29. Lönning, J.T. (1987) Mass Terms and Quantification, Language and Philosophy 10.Google Scholar
  30. Lönning, J.T. (1989) Some Aspects of the Logic of Plural Noun Phrases, Cosmos-Report No. 11, University of Oslo. Oslo.Google Scholar
  31. Meinhardt, H. (1995) The Algorithmic Beauty of Sea Shells, Springer-Verlag, Heidelberg.Google Scholar
  32. Mervis, C. and Rosch, E. (1981) Categorization of Natural Objects, Annual Review of Psychology 32.Google Scholar
  33. Montague, R. (1974), Formal Philosophy (edited by R. Thomason), Yale University Press, New Haven, Ct.Google Scholar
  34. Okabe, A., Boots, B., and Sugihara, K. (1992) Spatial Tessellations, Concepts and Applications of Voronoi Diagrams. J. Wiley. New York. NY.Google Scholar
  35. Pollard, C. and Sag, I. (1987) Information-Based Syntax and Semantics, vol 1, CSLI Lecture Notes, Stanford University. Stanford, CA.Google Scholar
  36. Popper, K. (1972) Objective Knowledge, Clarendon Press, Oxford.Google Scholar
  37. Posner, M. Y. and Raichle, M.E. (1994) Images of Mind. Scientific American Library, New York, NY.Google Scholar
  38. Rosch, E. (1978) Prototype Classification and Logical Classification, in E. Scholnik (ed.), New Trends in Cognitive Representation; Challenges to Piaget’s Theory. Lawrence Erlbaum Ass., Hillsdale, NJ.Google Scholar
  39. Scott Kelso, J.A. (1995) Dynamic Patterns: The Self-Organization of Brain and Behavior, MIT Press, Cambridge, Mass.Google Scholar
  40. Skarda, C.A. and Freeman, W.I. (1987) How Brain Make Chaos in order to Make Sense of the World, Behavioral and Brain Sciences 10.Google Scholar
  41. Skarda, C.A. and Freeman, W.J. (1990) Chaos and the New Science of the Mind, Concepts in Neuroscience 1.Google Scholar
  42. Suppes, P., Krantz, D.H., Luce, R.D. and Tversky, A. (1989) Foundations of Measurement, vol 2, Academic Press. New York. NY.Google Scholar
  43. Tarski, A. (1959) What is Elementary Geometry, in L Henkin et al (eds.). The Axiomatic Method. North-Holland, Amsterdam.Google Scholar
  44. Thorn, R. (1970) Topologie et Linguistique, in Essays on Topology, Springer-Verlag, Heidelberg.Google Scholar
  45. Thorn, R. (1973) Langage et Catastrophes: Eléments pour une Sémantique Topologique, in J. Pahs (ed.). Dynamical Systems. Academic Press, New York, NY.Google Scholar
  46. Turing, A.M. (1952) The Chemical Basis of Morphogenesis. Philos. Trans. R.Soc. London Ser. B., London.Google Scholar
  47. Vestre, E. (1987) Representasjon av Direkte Sporsmal. Cand. Scient. Thesis, Department of mathematics, University of Oslo. Oslo.Google Scholar
  48. White, L.A. (1947) The Locus of Mathematical Reality: An Anthropological Footnote, The Philosophy of Science Journal. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • J. E. Fenstad
    • 1
  1. 1.Institute of MathematicsUniversity of OsloNorway

Personalised recommendations