Advertisement

An overview of high-pressure systems including long-distance and dense phase pneumatic conveying systems

  • G. E. Klinzing
  • R. D. Marcus
  • F. Rizk
  • L. S. Leung
Part of the Powder Technology Series book series (POTS, volume 8)

Abstract

The recent surge in interest in dense phase and long-distance pneumatic conveying has stimulated vendors to develop a number of new systems specially directed towards increasing their market share in bulk materials handling. The proliferation of such systems has met with varied success and in many situations a basic lack in understanding of the flow phenomena has resulted in inappropriate solutions being offered for a particular handling problem.

Keywords

Pressure Drop Pressure Loss Froude Number Plug Flow Pipe Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lohrmann, P.C. and Marcus, R.D. (1984) Minimum energy pneumatic conveying II — dense phase, J. Pipelines, 4, 123–9.Google Scholar
  2. 2.
    Jodlowski, C. (1984) Considerations on two phase gas/solid flow at low velocities, Proc. Pneumatech II, Int. Conf. on Pneumatic Conveying Technology, Powder Advisory Centre UK, September.Google Scholar
  3. 3.
    Hoppe, H. (1984) Gentle pneumatic transport of friable materials by means of modern conveying methods, Proc. Pneumatech II, Int. Conf. on Pneumatic Conveying Technology, Powder Advisory Centre UK, September.Google Scholar
  4. 4.
    Plasynski, S.I., Klinzing, G.E. and Mathur, M.P. (1994) Powder Technology, 79, 95–109.CrossRefGoogle Scholar
  5. 5.
    Weber, M. (1991) Bulk Solids Handling, 11, No. 1, 99–102.Google Scholar
  6. 6.
    Knowlton, T. (1994) Proc. Pneumatic Conveying Workshop, Particle Technology Forum, Denver, CO.Google Scholar
  7. 7.
    Klintworth, J. and Marcus, R.D. (1985) A review of low velocity pneumatic conveying systems, J. Bulk Solids Handling, 747–54, August.Google Scholar
  8. 8.
    Shepherd, N. (1979) An investigation into the pneumatic transfer of fibrous and granular materials in the dense phase, M.Sc. Dissertation, Faculty of Engineering, University of Wiwatersrand, Johannesburg, South Africa.Google Scholar
  9. 9.
    When, C.Y. and Simons, H. (1959) AIChE J., 5, 263–7.CrossRefGoogle Scholar
  10. 10.
    Lippert, A. (1966) Chem. Ing. Technol., 38, 350–5.CrossRefGoogle Scholar
  11. 11.
    Muschelknautz, E. and Krambrock, W. (1969) Chem. Ing. Technol., 41, 1164–72.CrossRefGoogle Scholar
  12. 12.
    Flatt, W. (1980) Low velocity pneumatic conveying of granulated and pulverised products. Criteria for selecting the optimal pneumatic conveying system, Paper J3, Proc. Pneumotransport 5, BHRA Fluid Engineering, Cranfield, April.Google Scholar
  13. 13.
    Konrad, K., Harrison, D., Wedderman, R.M. and Davidson, J.F. (1980) Proc. 5th Int. Conf. on The Pneumatic Transport of Solids in Pipes, BHRA Fluid Engineering, Cranfield.Google Scholar
  14. 14.
    Dickson, A.J., Skews, B.W. and Marcus, R.D. (1978) Plug phase conveying, Proc. 4th Int. Conf. on The Pneumatic Transport of Solids in Pipes, BHRA Fluid Engineering, Cranfield.Google Scholar
  15. 15.
    Lilly, K. (1984) M.Sc. Thesis, Virginia Polytechnic Institute, Blacksbury, USA.Google Scholar
  16. 16.
    Konrad, K. and Davidson, J.F. (1984) Powder Technology, 39, 191–8.CrossRefGoogle Scholar
  17. 17.
    Hitt, R.J., Reed, A.R. and Mason, J.S. (1982) An investigation into two modes of slugging in dense phase horizontal pneumatic conveying, Proc. Pneumatech I, Powder Advisory Centre, UK.Google Scholar
  18. 18.
    Tomita, Y., Jokati, T. and Hayashi, H. (1981) Int. J. Multiphase Flow, 7, 151–66.CrossRefGoogle Scholar
  19. 19.
    Krambrock, W. and Parekh, S. (1980) Proc. 5th Int. Conf on the Pneumatic Transport of Solids in Pipes, BHRA Fluid Engineering, Cranfield.Google Scholar
  20. 20.
    Wilson, K.C. (1981) Int. J. Bulk Solids Handling, 1, 295–9.Google Scholar
  21. 21.
    Tsuji, Y. and Morikawa, Y. (1982) Int. J. Multiphase Flow, 8, 657–67.CrossRefGoogle Scholar
  22. 22.
    Wypych, P.W. and Arnold, P.C. (1984) The use of powder and pipe properties in the prediction of dense phase pneumatic transport behaviour, Proc. Pneumatech II, Powder Advisory Centre, UK.Google Scholar
  23. 23.
    Weber, M. (1974) Stromungs-Fordertechnik, Krausskopf Verlag.Google Scholar
  24. 24.
    Soo, S.L. (1984) J. of Pipelines, 4, 79–85.Google Scholar
  25. 25.
    Cuerten, HJ. (1984) Industrial applications of long distance pneumatic conveying, Proc. Pneumatech II, Powder Advisory Centre, UK.Google Scholar
  26. 26.
    Clarke, I. (1982) Proposed methods of mechanized wide orebody stoping at depth in a South African gold mine, Proc. 12th CMMI Congress, (ed. H.W. Glen) pp. 403–16.Google Scholar
  27. 27.
    Heinrich Klockner Becorit Industrie, Heinrich Robert Coal Mine, Germany.Google Scholar
  28. 28.
    Legel, D. and Schwedes, J. (1984) Bulk Solids Process, 4, 53.Google Scholar
  29. 29.
    Lippert, A. (1965) Dissertation University of Karlsruhe, Germany.Google Scholar
  30. 30.
    Gu, H. and Klinzing, G.E. (1989) Powder Technology, 57, 59–67.CrossRefGoogle Scholar
  31. 31.
    Aziz, Z.B. and Klinzing, G.E. (1988) Powder Technology, 55, 97–105.CrossRefGoogle Scholar
  32. 32.
    Aziz, Z.B. and Klinzing, G.E. (1990) Powder Technology, 62, 41–49.CrossRefGoogle Scholar
  33. 33.
    Dhodapkar, S.V., Plasynski, S.I. and Klinzing, G.E. (1994) Powder Technology, 81, 3–7.CrossRefGoogle Scholar
  34. 34.
    Mi, B. (1994) Ph.D. Dissertation, University of Wollongong, NSW, Australia (Advisor, P. Wypych).Google Scholar
  35. 35.
    Destoop, T. (1993) Powder Handling and Processing, 5, No. 2, 139–44.Google Scholar
  36. 36.
    Molerus, O. (1981) Chem. Engr. Sci., 36, 1977–84.CrossRefGoogle Scholar
  37. 37.
    Rizk, F. and Marcus, R.D. (1985) Einige Einflussgrossen bei der Langstrecken -Pneuma — Forderung Von Fein — und Grobgut in Rohrleitungen, Proc. Transmatic 85 Congress, University of Karlsruhe, April.Google Scholar
  38. 38.
    Marcus, R.D. (1985) Cement discharge — Anglo Alpha cement, internal report, University of Witwatersrand, Jahannesburg, Materials Handling Research Unit, January.Google Scholar
  39. 39.
    Hunke, H. (1982) Beitrag zur optimalen Auslegung pneumatischer Foerderandlagen fur den Baustoff Naturanhydrit anhand von Betriebsversuchen mit grossen Foer anlagen, Dissertation, Technical University, Berlin.Google Scholar
  40. 40.
    Dhodapkar, S.V., Zaltash, A., Myler, CA. and Klinzing, G.E. (1990) Proc. 6th Intl. Sym. on Freight Pipelines, Hemisphere Pub. Co, New York, 167.Google Scholar
  41. 41.
    Dhodapkar, S.V. and Klinzing, G.E. (1993) US Patent no. 5, 252, 007.Google Scholar

Copyright information

© G.E. Klinzing, R.D. Marcus and F. Rizk 1997

Authors and Affiliations

  • G. E. Klinzing
    • 1
  • R. D. Marcus
    • 2
    • 3
  • F. Rizk
    • 4
  • L. S. Leung
    • 5
  1. 1.Chemical EngineeringUniversity of PittsburghUSA
  2. 2.Morgan Education Technologies (Pty) LtdSouth Africa
  3. 3.Key Centre for Bulk Solids and Particulate TechnologiesUniversity of NewcastleAustralia
  4. 4.Technical Research and Development DepartmentBASF-AktiengesellschaftLudwigshafenGermany
  5. 5.Commonwealth Scientific and Industrial Research OrganizationAustralia

Personalised recommendations