Skip to main content

Flow regimes in vertical and horizontal conveying

  • Chapter
Pneumatic Conveying of Solids

Part of the book series: Powder Technology Series ((POTS,volume 8))

Abstract

The characteristics of vertical upflow pneumatic conveying can best be described qualitatively in terms of Zenz’s [1] often quoted plot of pressure gradient versus gas velocity for different solid flow rates (Fig. 5.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zenz, F.A. (1949) Ind. Eng. Chem., 41, 2801–6.

    Article  CAS  Google Scholar 

  2. Yerushalmi, J., Turner, D.H. and Squires, A.M. (1976) Ind. Eng. Chem. Process Design Development, 15, 47–52.

    Article  CAS  Google Scholar 

  3. Zenz, F.A. and Othmer, D.F. (1960) Fluidization and Fluid Particle Systems, Reinhold Publishing, New York.

    Google Scholar 

  4. Leung, L.S., Wiles, R.J. and Nicklin, D.J. (1971) Ind. Eng. Chem. Process Design Development, 10, 183–9.

    Article  Google Scholar 

  5. Capes, C.E. and Nakamura, K. (1973) Can. J. Chem. Eng., 51, 31–8.

    Article  Google Scholar 

  6. Ormiston, R.M. (1966) Slug flow in fluidized beds, Ph.D. Thesis, University of Cambridge.

    Google Scholar 

  7. Bandrowski, J., Kaczmarzyk, G., Malczyk, R. and Raczek, J. (1978) Aerodynamics of vertical pneumatic transport of granular materials part III, Inzynieria Chemiczna, 8, 779–95.

    Google Scholar 

  8. Yousfi, Y. and Gau, G. (1974) Chem. Eng. Sci., 29, 1939–46.

    Article  CAS  Google Scholar 

  9. Smith, T.N. (1978) Chem. Eng. Sci., 33, 745–9.

    Article  CAS  Google Scholar 

  10. Molerus, O. (1967) Chem. Eng. Technol, 39, 341–8.

    CAS  Google Scholar 

  11. Yang, W.C. (1977) Proceedings Pneumotransport 3, BHRA Fluid Engineering, Cranfield, E5–49-E5–55.

    Google Scholar 

  12. Harrison, D., Davidson, J.F. and de Koch, J.W. (1961) Trans. Inst. Chem. Engrs., 39, 202–212.

    CAS  Google Scholar 

  13. de Koch, J.W. (1961) Aggregative fluidization, Ph.D. Thesis, University of Cambridge.

    Google Scholar 

  14. Davidson, J.F. and Harrison, D. (1963) Fluidized Particles, Cambridge University Press, Cambridge.

    Google Scholar 

  15. Leung, L.S. and Wiles, R.J. (1976) Ind. Eng. Chem. Process Design and Development, 15, 552–7.

    Article  CAS  Google Scholar 

  16. Smith, T.N. (1977) Proceedings of Chemeca 77, Institution of Chemical Engineers, Australia, pp. 328–32.

    Google Scholar 

  17. Slis, P.L, Willemse, Th.W. and Kramers, H. (1959) Appl. Sci. Res., A8, 209–19.

    Article  Google Scholar 

  18. Richardson, J.F. and Zaki, W.N. (1954) Trans. Inst. Chem. Engrs., 32, 35–53.

    CAS  Google Scholar 

  19. Matsen, J.M. (1982) Powder Technology, 32, 21.

    Article  Google Scholar 

  20. Myler, CA., Zaltash, A, Dhodapkar, S.V. and Klinzing, G.E. (1988) Powder Technology, 57, 51.

    Article  Google Scholar 

  21. Doig, I.D. and Roper, G.H. (1963a) Aust. Chem. Eng., 4, No. 4, 9–19.

    Google Scholar 

  22. Punwani, D.V., Modi, M.V. and Tarman, P.B. (1976) A generalized correlation for estimating choking velocity in vertical solids transport, Proc. Inst. Powder and Bulk Solids Handling and Processing Conference, Powder Advisory Center, Chicago.

    Google Scholar 

  23. Chong, Y.O. and Leung, L.S. (1985) Powder Technology, 47, 43.

    Article  Google Scholar 

  24. Barth, W. (1954) Chem.-Ing.-Tech., 20, No. 1, 29–32.

    Article  Google Scholar 

  25. Gunther, W. (1957) Dissertation, Technische Hochschule Karlsruhe.

    Google Scholar 

  26. Rose, H.E. and Duckworth, R.A. (1969) Engineer, 227, 392–6,

    Google Scholar 

  27. Rose, H.E. and Duckworth, R.A. (1969) Engineer, 227, 430–3,

    Google Scholar 

  28. Rose, H.E. and Duckworth, R.A. (1969) Engineer, 227, 478–83.

    CAS  Google Scholar 

  29. Knowlton, T.M. and Bachovchin, CM. (1976) in Fluidization Technology, Vol. 2 (eds D.L. Keairns et al), Hemisphere Publishing Corporation, Washington, pp. 253–82.

    Google Scholar 

  30. Yang, W.C (1975) AIChE J., 21, 1013–5.

    Article  CAS  Google Scholar 

  31. Leva, M. (1959) Fluidization, McGraw-Hill, New York, pp. 135–47.

    Google Scholar 

  32. Duckworth, R.A. (1977) in Pneumatic Conveying of Solids (ed. L.S. Leung), University of Queensland, pp. 39–74.

    Google Scholar 

  33. Bi, H.T., Grace, J.R. and Zhu, J.X. (1993) Intl. J. Multiphase Flow, 19, 1077–92.

    Article  CAS  Google Scholar 

  34. Leung, L.S., Wiles, R.J. and Nicklin, D.J. (1969) Trans. Inst. Chem. Engrs, 47, 271–8.

    Google Scholar 

  35. Leung, L.S., Wiles, R.J. and Nicklin, D.J. (1972)) Proceedings of Pneumotransport 1, BHRA Fluid Engineering, Cranfield, B93–104.

    Google Scholar 

  36. Dixon, G. (1979) The impact of powder properties on dense phase flow, paper presented at International Conference on Pneumatic Conveying, Powder Advisory Centre, London.

    Google Scholar 

  37. Kehoe, P.W.K. and Davidson, J.F. (1971) Inst. Chem. Engr (London) Symp. Series, 33,97–116.

    Google Scholar 

  38. Reh, L. (1971) Chem. Eng. Prog., 67(2), 58–63.

    Google Scholar 

  39. Cankurt, N.T. and Yerushalmi, J. (1978) in Fluidization (eds J.F. Davidson and D.L. Keairns), Cambridge University Press, Cambridge, pp. 387–393.

    Google Scholar 

  40. Nakamura, K. and Capes, CE. (1976) in Fluidization Technology, Vol. 2 (eds D.L. Keairns et al), Hemisphere Publishing Corporation, Washington, pp. 159–184.

    Google Scholar 

  41. Muschelknautz, E. (1959) VDI Forsch., 476, 32–5.

    Google Scholar 

  42. Hair, A.R. and Smith, K.L. (1972) Mech. Chem. Eng. Trans. Inst, of Engineers, Australia, MC8, 1, 19–23.

    Google Scholar 

  43. Yang, W.C. (1978) Proceedings of Pneumotransport 4, BHRA Fluid Engineering, Cranfield, B21–31.

    Google Scholar 

  44. Zenz, F. (1964) Iand E.C. Fund., 3, No. 1, 65–75.

    Google Scholar 

  45. Bagnold, R.A. (1941) The Physics of Blown Sand and Desert Dunes, Methuen.

    Google Scholar 

  46. Thomas, D.G. (1961) AIChE J., 7, 432.

    Google Scholar 

  47. Matsumoto, S., Harada, S., Saito, S. and Maeda, S.J. (1975) Chem. Eng., Japan, 7,425.

    Google Scholar 

  48. Tsuji, Y. and Morikawa, Y. (1982) J. Fluid Mech., 120, 385.

    Article  Google Scholar 

  49. Scott, A.M. (1977) Proceedings 4 <Superscript>th </Superscript> International Powder Technology and Bulk Solids Conference, Harrogate, pp. 10–14.

    Google Scholar 

  50. Leung, L.S. and Jones, P.J. (1978) Proceedings of Pneumotransport 4, BHRA Fluid Engineering, Cranfield, paper CI.

    Google Scholar 

  51. Rizk, F. (1973) Proceedings of Pneumotransport 3, BHRA Fluid Engineering, Cranfield, paper D4.

    Google Scholar 

  52. Thomas, D.G. (1962) AIChE J., 8, 373.

    Article  CAS  Google Scholar 

  53. Matsumoto, S., Kikuta, M. and Maeda, S. (1977) J. Chem. Eng. Japan, 10, No. 2, 273.

    Article  CAS  Google Scholar 

  54. Plasynski, S.I., Dhodapkar, S.V., Klinzing, G.E. and Cabrejos, F.J. (1991) AIChE Sym. Series, 87, 78–90.

    CAS  Google Scholar 

  55. Cabrejos, F.J. and Klinzing, G.E. (1994) Powder Tech., 79, 173–86.

    Article  CAS  Google Scholar 

  56. Zenz, F. (1977) I & EC Fundamentals, 10, No. 4, 173–86.

    Google Scholar 

  57. Halow, J. (1973) Chem. Eng. Sci., 28, 1.

    Article  CAS  Google Scholar 

  58. Azizov, A. and Toshov, V.R. (1987) J. Appl. Mech. Tech. Phys., 27, 855.

    Article  Google Scholar 

  59. Cabrejos, F.J. and Klinzing, G.E. (1994) Bulk Solids Handling, 14, No. 3, 1.

    Google Scholar 

  60. Cabrejos, F.J., Klinzing, G.E. and Dibble, M.L. (1993) ASME, FED Vol. 166, Gas-Solid Flows, 265–72.

    Google Scholar 

  61. Villareal, J.A. and Klinzing, G.E. (1994) Powder Tech., 80, 179–182.

    Article  CAS  Google Scholar 

  62. Yang, W.-C. (1988) Proc. of 2nd Intl. Conf. on Circulating Fluid Beds, Compiègne, France.

    Google Scholar 

  63. Kwauk, M., Want, N., Li, Y., Chen, B. and Shen, Z. (1985) in Circulating Fluidized Bed Technology (ed. P. Basu), Pergamon Press, Toronto.

    Google Scholar 

  64. Weinstein, H., Graff, R.A., Meiler, M. and Shao, M.J. (1983) Fluidization (ed. D. Kunii and R. Toei), Engineering Foundation, New York.

    Google Scholar 

  65. Arena, U., Cammarota, A., Pistone, L. and Techhio, P.V. (1985) in Circulating Fluidized Bed Technology (ed. P. Basu), Pergamon Press, Toronto.

    Google Scholar 

  66. Rhodes, M., Zhou, A. and Benkreira, H. (1992) AIChE Journal, 38, 1913–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 G.E. Klinzing, R.D. Marcus and F. Rizk

About this chapter

Cite this chapter

Klinzing, G.E., Marcus, R.D., Rizk, F., Leung, L.S. (1997). Flow regimes in vertical and horizontal conveying. In: Pneumatic Conveying of Solids. Powder Technology Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8981-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8981-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-8983-3

  • Online ISBN: 978-94-015-8981-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics