Advertisement

Flow regimes in vertical and horizontal conveying

  • G. E. Klinzing
  • R. D. Marcus
  • F. Rizk
  • L. S. Leung
Part of the Powder Technology Series book series (POTS, volume 8)

Abstract

The characteristics of vertical upflow pneumatic conveying can best be described qualitatively in terms of Zenz’s [1] often quoted plot of pressure gradient versus gas velocity for different solid flow rates (Fig. 5.1).

Keywords

Slip Velocity Dense Phase Solid Flow Solid Flux Solid Flow Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zenz, F.A. (1949) Ind. Eng. Chem., 41, 2801–6.CrossRefGoogle Scholar
  2. 2.
    Yerushalmi, J., Turner, D.H. and Squires, A.M. (1976) Ind. Eng. Chem. Process Design Development, 15, 47–52.CrossRefGoogle Scholar
  3. 3.
    Zenz, F.A. and Othmer, D.F. (1960) Fluidization and Fluid Particle Systems, Reinhold Publishing, New York.Google Scholar
  4. 4.
    Leung, L.S., Wiles, R.J. and Nicklin, D.J. (1971) Ind. Eng. Chem. Process Design Development, 10, 183–9.CrossRefGoogle Scholar
  5. 5.
    Capes, C.E. and Nakamura, K. (1973) Can. J. Chem. Eng., 51, 31–8.CrossRefGoogle Scholar
  6. 6.
    Ormiston, R.M. (1966) Slug flow in fluidized beds, Ph.D. Thesis, University of Cambridge.Google Scholar
  7. 7.
    Bandrowski, J., Kaczmarzyk, G., Malczyk, R. and Raczek, J. (1978) Aerodynamics of vertical pneumatic transport of granular materials part III, Inzynieria Chemiczna, 8, 779–95.Google Scholar
  8. 8.
    Yousfi, Y. and Gau, G. (1974) Chem. Eng. Sci., 29, 1939–46.CrossRefGoogle Scholar
  9. 9.
    Smith, T.N. (1978) Chem. Eng. Sci., 33, 745–9.CrossRefGoogle Scholar
  10. 10.
    Molerus, O. (1967) Chem. Eng. Technol, 39, 341–8.Google Scholar
  11. 11.
    Yang, W.C. (1977) Proceedings Pneumotransport 3, BHRA Fluid Engineering, Cranfield, E5–49-E5–55.Google Scholar
  12. 12.
    Harrison, D., Davidson, J.F. and de Koch, J.W. (1961) Trans. Inst. Chem. Engrs., 39, 202–212.Google Scholar
  13. 13.
    de Koch, J.W. (1961) Aggregative fluidization, Ph.D. Thesis, University of Cambridge.Google Scholar
  14. 14.
    Davidson, J.F. and Harrison, D. (1963) Fluidized Particles, Cambridge University Press, Cambridge.Google Scholar
  15. 15.
    Leung, L.S. and Wiles, R.J. (1976) Ind. Eng. Chem. Process Design and Development, 15, 552–7.CrossRefGoogle Scholar
  16. 16.
    Smith, T.N. (1977) Proceedings of Chemeca 77, Institution of Chemical Engineers, Australia, pp. 328–32.Google Scholar
  17. 17.
    Slis, P.L, Willemse, Th.W. and Kramers, H. (1959) Appl. Sci. Res., A8, 209–19.CrossRefGoogle Scholar
  18. 18.
    Richardson, J.F. and Zaki, W.N. (1954) Trans. Inst. Chem. Engrs., 32, 35–53.Google Scholar
  19. 19.
    Matsen, J.M. (1982) Powder Technology, 32, 21.CrossRefGoogle Scholar
  20. 20.
    Myler, CA., Zaltash, A, Dhodapkar, S.V. and Klinzing, G.E. (1988) Powder Technology, 57, 51.CrossRefGoogle Scholar
  21. 21.
    Doig, I.D. and Roper, G.H. (1963a) Aust. Chem. Eng., 4, No. 4, 9–19.Google Scholar
  22. 22.
    Punwani, D.V., Modi, M.V. and Tarman, P.B. (1976) A generalized correlation for estimating choking velocity in vertical solids transport, Proc. Inst. Powder and Bulk Solids Handling and Processing Conference, Powder Advisory Center, Chicago.Google Scholar
  23. 23.
    Chong, Y.O. and Leung, L.S. (1985) Powder Technology, 47, 43.CrossRefGoogle Scholar
  24. 24.
    Barth, W. (1954) Chem.-Ing.-Tech., 20, No. 1, 29–32.CrossRefGoogle Scholar
  25. 25.
    Gunther, W. (1957) Dissertation, Technische Hochschule Karlsruhe.Google Scholar
  26. 26.
    Rose, H.E. and Duckworth, R.A. (1969) Engineer, 227, 392–6,Google Scholar
  27. 26a.
    Rose, H.E. and Duckworth, R.A. (1969) Engineer, 227, 430–3,Google Scholar
  28. 26b.
    Rose, H.E. and Duckworth, R.A. (1969) Engineer, 227, 478–83.Google Scholar
  29. 27.
    Knowlton, T.M. and Bachovchin, CM. (1976) in Fluidization Technology, Vol. 2 (eds D.L. Keairns et al), Hemisphere Publishing Corporation, Washington, pp. 253–82.Google Scholar
  30. 28.
    Yang, W.C (1975) AIChE J., 21, 1013–5.CrossRefGoogle Scholar
  31. 29.
    Leva, M. (1959) Fluidization, McGraw-Hill, New York, pp. 135–47.Google Scholar
  32. 30.
    Duckworth, R.A. (1977) in Pneumatic Conveying of Solids (ed. L.S. Leung), University of Queensland, pp. 39–74.Google Scholar
  33. 31.
    Bi, H.T., Grace, J.R. and Zhu, J.X. (1993) Intl. J. Multiphase Flow, 19, 1077–92.CrossRefGoogle Scholar
  34. 32.
    Leung, L.S., Wiles, R.J. and Nicklin, D.J. (1969) Trans. Inst. Chem. Engrs, 47, 271–8.Google Scholar
  35. 33.
    Leung, L.S., Wiles, R.J. and Nicklin, D.J. (1972)) Proceedings of Pneumotransport 1, BHRA Fluid Engineering, Cranfield, B93–104.Google Scholar
  36. 34.
    Dixon, G. (1979) The impact of powder properties on dense phase flow, paper presented at International Conference on Pneumatic Conveying, Powder Advisory Centre, London.Google Scholar
  37. 35.
    Kehoe, P.W.K. and Davidson, J.F. (1971) Inst. Chem. Engr (London) Symp. Series, 33,97–116.Google Scholar
  38. 36.
    Reh, L. (1971) Chem. Eng. Prog., 67(2), 58–63.Google Scholar
  39. 37.
    Cankurt, N.T. and Yerushalmi, J. (1978) in Fluidization (eds J.F. Davidson and D.L. Keairns), Cambridge University Press, Cambridge, pp. 387–393.Google Scholar
  40. 38.
    Nakamura, K. and Capes, CE. (1976) in Fluidization Technology, Vol. 2 (eds D.L. Keairns et al), Hemisphere Publishing Corporation, Washington, pp. 159–184.Google Scholar
  41. 39.
    Muschelknautz, E. (1959) VDI Forsch., 476, 32–5.Google Scholar
  42. 40.
    Hair, A.R. and Smith, K.L. (1972) Mech. Chem. Eng. Trans. Inst, of Engineers, Australia, MC8, 1, 19–23.Google Scholar
  43. 41.
    Yang, W.C. (1978) Proceedings of Pneumotransport 4, BHRA Fluid Engineering, Cranfield, B21–31.Google Scholar
  44. 42.
    Zenz, F. (1964) Iand E.C. Fund., 3, No. 1, 65–75.Google Scholar
  45. 43.
    Bagnold, R.A. (1941) The Physics of Blown Sand and Desert Dunes, Methuen.Google Scholar
  46. 44.
    Thomas, D.G. (1961) AIChE J., 7, 432.Google Scholar
  47. 45.
    Matsumoto, S., Harada, S., Saito, S. and Maeda, S.J. (1975) Chem. Eng., Japan, 7,425.Google Scholar
  48. 46.
    Tsuji, Y. and Morikawa, Y. (1982) J. Fluid Mech., 120, 385.CrossRefGoogle Scholar
  49. 47.
    Scott, A.M. (1977) Proceedings 4 <Superscript>th </Superscript> International Powder Technology and Bulk Solids Conference, Harrogate, pp. 10–14.Google Scholar
  50. 48.
    Leung, L.S. and Jones, P.J. (1978) Proceedings of Pneumotransport 4, BHRA Fluid Engineering, Cranfield, paper CI.Google Scholar
  51. 49.
    Rizk, F. (1973) Proceedings of Pneumotransport 3, BHRA Fluid Engineering, Cranfield, paper D4.Google Scholar
  52. 50.
    Thomas, D.G. (1962) AIChE J., 8, 373.CrossRefGoogle Scholar
  53. 51.
    Matsumoto, S., Kikuta, M. and Maeda, S. (1977) J. Chem. Eng. Japan, 10, No. 2, 273.CrossRefGoogle Scholar
  54. 52.
    Plasynski, S.I., Dhodapkar, S.V., Klinzing, G.E. and Cabrejos, F.J. (1991) AIChE Sym. Series, 87, 78–90.Google Scholar
  55. 53.
    Cabrejos, F.J. and Klinzing, G.E. (1994) Powder Tech., 79, 173–86.CrossRefGoogle Scholar
  56. 54.
    Zenz, F. (1977) I & EC Fundamentals, 10, No. 4, 173–86.Google Scholar
  57. 55.
    Halow, J. (1973) Chem. Eng. Sci., 28, 1.CrossRefGoogle Scholar
  58. 56.
    Azizov, A. and Toshov, V.R. (1987) J. Appl. Mech. Tech. Phys., 27, 855.CrossRefGoogle Scholar
  59. 57.
    Cabrejos, F.J. and Klinzing, G.E. (1994) Bulk Solids Handling, 14, No. 3, 1.Google Scholar
  60. 58.
    Cabrejos, F.J., Klinzing, G.E. and Dibble, M.L. (1993) ASME, FED Vol. 166, Gas-Solid Flows, 265–72.Google Scholar
  61. 59.
    Villareal, J.A. and Klinzing, G.E. (1994) Powder Tech., 80, 179–182.CrossRefGoogle Scholar
  62. 60.
    Yang, W.-C. (1988) Proc. of 2nd Intl. Conf. on Circulating Fluid Beds, Compiègne, France.Google Scholar
  63. 61.
    Kwauk, M., Want, N., Li, Y., Chen, B. and Shen, Z. (1985) in Circulating Fluidized Bed Technology (ed. P. Basu), Pergamon Press, Toronto.Google Scholar
  64. 62.
    Weinstein, H., Graff, R.A., Meiler, M. and Shao, M.J. (1983) Fluidization (ed. D. Kunii and R. Toei), Engineering Foundation, New York.Google Scholar
  65. 63.
    Arena, U., Cammarota, A., Pistone, L. and Techhio, P.V. (1985) in Circulating Fluidized Bed Technology (ed. P. Basu), Pergamon Press, Toronto.Google Scholar
  66. 64.
    Rhodes, M., Zhou, A. and Benkreira, H. (1992) AIChE Journal, 38, 1913–15.CrossRefGoogle Scholar

Copyright information

© G.E. Klinzing, R.D. Marcus and F. Rizk 1997

Authors and Affiliations

  • G. E. Klinzing
    • 1
  • R. D. Marcus
    • 2
    • 3
  • F. Rizk
    • 4
  • L. S. Leung
    • 5
  1. 1.Chemical EngineeringUniversity of PittsburghUSA
  2. 2.Morgan Education Technologies (Pty) LtdSouth Africa
  3. 3.Key Centre for Bulk Solids and Particulate TechnologiesUniversity of NewcastleAustralia
  4. 4.Technical Research and Development DepartmentBASF-AktiengesellschaftLudwigshafenGermany
  5. 5.Commonwealth Scientific and Industrial Research OrganizationAustralia

Personalised recommendations