Advertisement

Fundamentals

  • G. E. Klinzing
  • R. D. Marcus
  • F. Rizk
  • L. S. Leung
Part of the Powder Technology Series book series (POTS, volume 8)

Abstract

Pneumatic transport involves the movement of millions of particles in a confined space. To begin to understand this form of transport a detailed analysis of the behaviour of a single particle is necessary. From this basic understanding we can develop the more complex systems involving many particles with their interactions with each other and the confinement surface.

Keywords

Pressure Drop Particle Velocity Drag Coefficient Pressure Loss Slip Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kaye, B.H. (1981) Direct Characterization of Fine Particles, Wiley, New York.Google Scholar
  2. 2.
    CEMA (1970) Classification and Definition of Bulk Materials, Book No. 550, Washington, DC.Google Scholar
  3. 3.
    Boothroyd, R.G. (1971) Flowing Gas Solids Suspensions, Chapman and Hall, London.Google Scholar
  4. 4.
    Tchen, CM. (1947) Ph.D. Thesis, Delft, Martinus Nijhoff, The Hague.Google Scholar
  5. 5.
    Corrosin, S. and Lumley, J. (1956) Appl. Sci. Res., 6A, 114.Google Scholar
  6. 6.
    Soo, S.L. (1967) Fluid Dynamics of Multiphase Systems, Blaisdell, Waltham, MA.Google Scholar
  7. 7.
    Grace, J.R. and Tuot, J. (1979) Trans. Inst. Chem. Engrs, 57, 49.Google Scholar
  8. 8.
    Yousfi, Y. and Gau, G. (1974) Chem. Eng. Sci., 29, 1939.CrossRefGoogle Scholar
  9. 9.
    Heywood, H.J. (1963) Pharm. Pharmacol. Suppl, 15, 56T.CrossRefGoogle Scholar
  10. 10.
    Beddow, J.K., Lee, Y, Vetter, A.F. and Lenth, R. (1980) Powder Technology, 25,137.CrossRefGoogle Scholar
  11. 11.
    Beddow, J.K, Phillip, G.C., Vetter, A.F. and Nasta, M.D. (1977). Powder Technology, 18, 19.CrossRefGoogle Scholar
  12. 12.
    Beddow, J.K., Fong, S.T. and Vetter, A.F. (1979) Powder Technology, 22, 17.CrossRefGoogle Scholar
  13. 13.
    Mandelbrot, B.B. (1983) The Fractal Geometry of Nature, Freeman, New York.Google Scholar
  14. 14.
    Kaye, B.H. (1983) Modern Methods of Fine Particle Characterization (ed. J.K. Beddow), CRC Press, Cleveland.Google Scholar
  15. 15.
    Flook, A.G. (1978) Powder Technology, 21, 295.CrossRefGoogle Scholar
  16. 16.
    McCabe, W.L. and Smith, J.C. (1976) Unit Operations of Chemical Engineering, 3rd edn, McGraw-Hill, New York.Google Scholar
  17. 17.
    Wen, C.Y. and Yu, Y.H. (1966) Chem. Eng. Prog. Symp., 62, 100.Google Scholar
  18. 18.
    Barth, W. (1954) Chem. Ing. Tech. 20, no. 1, 29–32.CrossRefGoogle Scholar
  19. 19.
    Yang, W.C. (1976) Pneumotransport, VI.Google Scholar
  20. 20.
    Konno, H. and Saito, S.J. (1969) Chem. Eng. Japan, 2, 211.CrossRefGoogle Scholar
  21. 21.
    Govier, G.W. and Aziz, K. (1972) The Flow of Complex Mixtures in Pipes, van Nostrand Reinhold, New York.Google Scholar
  22. 22.
    Weber, M. (1973) Stromungs-Fordertechnik, Krausskopf Verlag.Google Scholar
  23. 23.
    Wen, C.Y. (1971) Proc. Bulk Handling Conference, Vol. I, University of Pittsburgh, Pittsburgh, PA.Google Scholar
  24. 24.
    Hinkle, B.L. (1953) Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA.Google Scholar
  25. 25.
    Institute of Gas Technology (1978) Dept. of Energy, Contract FE 2286–32, October.Google Scholar
  26. 26.
    Yang, W.C. (1976) Int. Powder & Bulk Solids Handling, Chicago, May.Google Scholar
  27. 27.
    Stemerding, S. (1962) Chem. Eng. Sci., 17, 599.CrossRefGoogle Scholar
  28. 28.
    Reddy, K.V.S. and Pei, D.C.T. (1969) I.E.C. Fund, 8, 490.CrossRefGoogle Scholar
  29. 29.
    Van Swaaij, W.P.M, Buurman, C. and van Breugel, I.W. (1970) Chem. Eng. Sci, 25,1818.CrossRefGoogle Scholar
  30. 30.
    Capes, CE. and Nakamura, K. (1973) Can. J. Chem. Eng., 51, 31.CrossRefGoogle Scholar
  31. 31.
    Konno, H. and Siato, S.J. (1969) Chem. Eng. Japan, 2, 211.CrossRefGoogle Scholar
  32. 32.
    Yang, W.C. (1976) Int. Powder & Bulk Solids Handling, Chicago, May.Google Scholar
  33. 33.
    Yang, W.C. (1978) AIChE J., 24, 548.CrossRefGoogle Scholar
  34. 34.
    Stegmaier, W. (1978) Fordern and Heben, 28, 363.Google Scholar
  35. 35.
    Mathur, M.P. and Klinzing, G.E. (1983) AIChE Annual Meeting Washington, DC, Nov.Google Scholar
  36. 36.
    Matsen, J. (1981) AIChE Annual Meeting Washington, DC, Nov.Google Scholar
  37. 37.
    Klinzing, G.E. (1981) Gas Solid Transport, McGraw-Hill, New York.Google Scholar
  38. 38.
    Klinzing, G.E. (1978) Ind. Eng. Chem. Process Design Development, 18, 404.CrossRefGoogle Scholar
  39. 39.
    Shimizu, A., Echigo, R. and Hasigawa, S. (1978) Int. J. Multiphase Flow, 4, 53.CrossRefGoogle Scholar
  40. 40.
    Kerker, L. (1977) Ph.D. Thesis, Universität Karlsruhe.Google Scholar
  41. 41.
    Yousfi, K. and Alia, Y. (1981) Second World Congress of Chem. Engr, Montreal.Google Scholar
  42. 42.
    Enick, R. and Klinzing, G.E. (1985) Proc. Fine Particle Soc, Miami.Google Scholar
  43. 43.
    Dhodapkar, S.V., Zaltash, A., Myler, C.A. and Klinzing, G.E. (1989) Fluidization and fluid particle systems — fund and applications, AIChE Sym. Series, 85, No. 270,1–10.Google Scholar
  44. 44.
    Soo, S.L., Dimick, R.C. and Hohnstreiter, G.F. (1964) IEC Fund, 3, 98.CrossRefGoogle Scholar
  45. 45.
    Arundel, P.A., Bibb, S.D. and Boothroyd, R.G. (1970) Powder Tech., 4, 302.CrossRefGoogle Scholar
  46. 46.
    Zenker, P. (1972) Staub-Reinhalt, Luft, 32, 1.Google Scholar
  47. 47.
    Zenker, P. (1972) Staub-Reinhalt, Luft, 32, 1.Google Scholar
  48. 48.
    Weinstein, H. (1983) AIChE Annual Meeting Washington, DC, Nov.Google Scholar
  49. 49.
    Capes, C.E. and Nakamura, K. (1973) Can. J. Chem. Eng., 51, 31.CrossRefGoogle Scholar
  50. 50.
    Wen, C.Y. and Simon, H.P. (1959) AIChE J., 5, 263.CrossRefGoogle Scholar
  51. 51.
    Rudinger, G. (1976) Gas-Solid Suspensions, VKI Lecture Series 90.Google Scholar
  52. 52.
    Jung, R. (1966–8) BWK, 118, 377.Google Scholar
  53. 53.
    Jung, R. (1969) VDI Forch. Heft, 532.Google Scholar
  54. 54.
    Yamamoto, A., Takashima, M., Yamaguchi, T., Tanaka, S. and Morikawa, Y. (1977) Bull. JSME, 20, 991.CrossRefGoogle Scholar
  55. 55.
    Morimoto, T., Yamamoto, A., Nakao, T., Tanaka, S. and Morikawa, Y. (1977) Bull. JSME, 20, 991.CrossRefGoogle Scholar
  56. 56.
    Morikawa, Y, Kono, T. and Hiramato, T. (1978) Int. J. Multiphase Flow, 4, 397.CrossRefGoogle Scholar
  57. 57.
    Ito, H. (1959) Trans. ASME J. Basic Eng., 81D, 123.Google Scholar
  58. 58.
    Ito, H. (1960) Trans. ASME J. Basic Eng., 82D, 131.CrossRefGoogle Scholar
  59. 59.
    Schuchart, P. (1969) Chem. Eng. Technol., 41, 1251.Google Scholar
  60. 60.
    Spronson, J.C., Gray, N.A. and Haynes, J. (1972) Pneumotransport 2, Paper B2.Google Scholar
  61. 61.
    Mason, J.S. and Smith, B.V. (1973) Pneumotransport 2, Paper A2.Google Scholar
  62. 62.
    Morikawa, Y., Tsuji, Y., Matsui, K.J. and Hani, Y. (1970) Int. J. Multiphase Flow, 4,575.CrossRefGoogle Scholar
  63. 63.
    Duckworth, R.A. and Rose, H.E. (1969) The Engineer, March 14, 392.Google Scholar
  64. 64.
    Falkenberg, K.L., Enick, R. and Klinzing, G.E. (1987) Proc. of Fine Particle Society and Multiphase Systems, Hemisphere Publishing, 307.Google Scholar
  65. 65.
    Mathur, M.P. and Klinzing, G.E. (1986) J. Freight Pipelines, J. Pipelines, 5, 197.Google Scholar
  66. 66.
    Shimizu, A., Echigo, R. and Hasegawa, S. (1978) Int. J. Multiphase Flow, 4, 53.CrossRefGoogle Scholar
  67. 67.
    Marcus, R.D., Hilbert, J. and Klinzing, G.E. (1984) J. Freight Pipelines, J. Pipelines, 4, 103.Google Scholar
  68. 68.
    Bodner, S. (1982) Pneumatech I, Stanford, England.Google Scholar
  69. 69.
    Smeltzer, E.E., Eckhardt, D.A., Yang, W.C. and Skriba, M.C. (1979) Research Report 79–8E3-PWTRS-RI, Westinghouse Research.Google Scholar
  70. 70.
    Saroff, L, Gromicko, F.H., Johnson, G.E, Strakey, J.P. and Hayes, W.P. (1976) 69th Annual Meeting AIChE, Chicago.Google Scholar
  71. 71.
    Tsuji, Y. and Morikawa, Y. (1980) Fordern und Heben, 30, No. 6, 515.Google Scholar
  72. 72.
    Canning, D.A. and Thompson, A.T. (1982) Century II Conf. ASME Meeting, San Francisco, CA, August.Google Scholar
  73. 73.
    Lohrmann, P. (1983) M.Sc. dissertation, University of the Witwatersrand, Johannesburg, South Africa.Google Scholar
  74. 74.
    Yerushalmi, J. and Cankert, N.T. (1979) Powder Technology, 24, 187.CrossRefGoogle Scholar
  75. 75.
    Weinstein, H. (1983) AIChE Meeting, Washington, Nov.Google Scholar
  76. 76.
    Dixon, G. (1979) Int. Conf. on Pneumatic Conveying, Cafe Royal, London, Jan.Google Scholar
  77. 77.
    Muschelknautz, E. and Krambrock, W. (1969) Chemie-1ng-Tech., 41, 1164.CrossRefGoogle Scholar
  78. 78.
    Konrad, K, Harrison, D, Nedderman, R.M. and Davidson, J.F. (1980) Pneumatransport, 5, Paper E1, p. 225.Google Scholar
  79. 79.
    Tsuji, Y, Morikawa, Y. and Honda, H. (1979) J. Powder & Bulk Solids Technology, 3,30.Google Scholar
  80. 80.
    Hovmand, S. and Davidson, J.F. (1971) in Fluidization (eds J.F. Davidson and D. Harrison), Academic Press, London, pp. 193–260.Google Scholar
  81. 81.
    Thiel, W.J. and Potter, O.E. (1977) Ind. Eng. Chem. Fundamentals, 16, 242–7.CrossRefGoogle Scholar
  82. 82.
    Steward, P.S.B. and Davidson, J.F. (1967) Powder Technology, 1, 61–80.CrossRefGoogle Scholar
  83. 83.
    Nicklin, D.J, Wilkes, J.D. and Davidson, J.F. (1962) Trans. Inst. Chem. Engrs, 40,61–8.Google Scholar
  84. 84.
    Kehoe, P.W.K. and Davidson, J.F. (1971) Inst. Chem. Engrs (London) Symp. Series, 33, 97–116.Google Scholar
  85. 85.
    Matsen, J.M, Hovmand, S. and Davidson, J.F. (1969) Chem. Eng. Sci., 24,1743–54.CrossRefGoogle Scholar
  86. 86.
    Matsen, J.M. (1973) Powder Technology, 7, 93–6.CrossRefGoogle Scholar
  87. 87.
    Ormiston, R.M. (1966), Slug flow in fluidized beds, Ph.D. Thesis, University of Cambridge.Google Scholar
  88. 88.
    Capes, C.E. and Nakamura, K. (1973) Can. J. Chem. Eng., 51, 31–8.CrossRefGoogle Scholar
  89. 89.
    Van Swaaij, W.P.M, Buurman, C. and van Breugel, W.C. (1970) Chem. Eng. Sci., 25, 1818–20.CrossRefGoogle Scholar
  90. 90.
    Zenz, F.A. and Othmer, D.F. (1960) Fluidization and Fluid Particle Systems, Van Reinhold, New York.Google Scholar
  91. 91.
    Geldart, D. (1973) Powder Technology, 7, 285–92.CrossRefGoogle Scholar
  92. 92.
    Yerushalmi, J., Turner, D.H. and Squires, A.M. (1976) Ind. Eng. Chem. Process Design Development, 15, 47–52.CrossRefGoogle Scholar
  93. 93.
    Yerushalmi, J. and Cankurt, N. (1979) Powder Technology, 24, 187–205.CrossRefGoogle Scholar
  94. 94.
    Reh, L. (1971) Chem. Eng. Prog., 67(2), 58–63.Google Scholar
  95. 95.
    Nakamura, K. and Capes, C.E. (1973) Chem. J. Chem. Eng., 51, 39–46.Google Scholar
  96. 96.
    Nakamura, K. and Capes, C.E. (1976) in Fluidization Technology, Vol. 2, (eds D.L. Keairns et al), Hemisphere Publishing Corporation, Washington, pp. 159–84.Google Scholar
  97. 97.
    Richardson, J.F. and Zaki, W.N. (1954) Trans. Inst. Chem. Engrs, 32, 35–53.Google Scholar
  98. 98.
    Hinkle, B.L. (1953) Acceleration of particles and pressure drops encountered in horizontal pneumatic conveying, Ph.D. Thesis, Georgia Institute of Technology.Google Scholar
  99. 99.
    Wen, C.Y. and Simons, H.P. (1959) AIChE J., 6, 263–8.CrossRefGoogle Scholar
  100. 100.
    Yang, W.C (1974) AIChE J, 20, 605–7.CrossRefGoogle Scholar
  101. 101.
    Bandrowski, J., Kaczmarzyk, G., Nowk, W. and Sciazko, M. (1977) Inz. Chem., 7, 243–53,Google Scholar
  102. 101a.
    Bandrowski, J., Kaczmarzyk, G., Nowk, W. and Sciazko, M. (1977) Inz. Chem., 7, 499–507.Google Scholar
  103. 102.
    Tsuji, Y. and Morikawa, Y. (1982) Int. J. Multiphase Flow, 8, 657.CrossRefGoogle Scholar
  104. 103.
    Tsuji, Y. and Morikawa, Y. (1982) Trans. ASME, 104.Google Scholar
  105. 104.
    Klinzing, G.E, Myler, C.A, Zaltash, A. and Dhodapkar, S.V. (1989) Part. Sci. and Tech., 7, 71–85.CrossRefGoogle Scholar
  106. 105.
    Klinzing, G.E, Rohatgi, N.D, Myler, CA, Dhodapkar, S.V. and Zaltash, A. (1989) Can. J. of Chem. Engr., 67, 237–44.CrossRefGoogle Scholar
  107. 106.
    Tsuji, Y, Shen, N.Y. and Morikawa, Y. (1991) Adv. Powder Tech., 2, No. 1, 63–81.CrossRefGoogle Scholar
  108. 107.
    Sommerfeld, M. and Zivkovic, G. (1992) in Computational Fluid Dynamics Conference and First European Conference on Numerical Methods in Engineering (ed. Ch. Hirsch, J. Periaux, and E. Onate), Brussels, 201–12.Google Scholar
  109. 108.
    Sommerfeld, M. (1994) ASME, FED VOL. 180, Book No. G00858, 1–14.Google Scholar
  110. 109.
    Bolio, E.J, Yasuna, J.A. and Sinclair, J.L. (1995) AIChE., 41, 1375.CrossRefGoogle Scholar

Copyright information

© G.E. Klinzing, R.D. Marcus and F. Rizk 1997

Authors and Affiliations

  • G. E. Klinzing
    • 1
  • R. D. Marcus
    • 2
    • 3
  • F. Rizk
    • 4
  • L. S. Leung
    • 5
  1. 1.Chemical EngineeringUniversity of PittsburghUSA
  2. 2.Morgan Education Technologies (Pty) LtdSouth Africa
  3. 3.Key Centre for Bulk Solids and Particulate TechnologiesUniversity of NewcastleAustralia
  4. 4.Technical Research and Development DepartmentBASF-AktiengesellschaftLudwigshafenGermany
  5. 5.Commonwealth Scientific and Industrial Research OrganizationAustralia

Personalised recommendations