Advertisement

Fluid and particle dynamics

  • G. E. Klinzing
  • R. D. Marcus
  • F. Rizk
  • L. S. Leung
Part of the Powder Technology Series book series (POTS, volume 8)

Abstract

In pneumatic conveying, particles are generally in suspension in a turbulent gas stream. The question of drag on a single particle, and the effects of Reynolds number, particle shape and roughness, voidage, turbulence intensity and scale of turbulence, acceleration, etc. on drag are relevant to pneumatic conveying. These factors will be discussed in this chapter. Equations for calculating important properties such as drag coefficient, terminal velocity, minimum fluidization velocity, and the equation for flow through a packed bed are presented. The characteristics of a powder in terms of its fluidization behaviour are relevant to pneumatic conveying, and will also be discussed.

Keywords

Reynolds Number Drag Coefficient Particle Dynamic Terminal Velocity Critical Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lapple, CE. and Shepherd, C.B. (1940) Ind. Eng. Chem., 32, 605–17.CrossRefGoogle Scholar
  2. 2.
    Allen, H.S. (1900) Phil. Mag., 5, 50, 323.Google Scholar
  3. 3.
    Clamen, A. and Gauvin, W.H. (1969) AIChE J., 15, 110, 2, 184–9.CrossRefGoogle Scholar
  4. 4.
    Boothroyd, R.G. (1971) Flowing Gas-Solids Suspension, Chapman and Hall, London.Google Scholar
  5. 5.
    Soo, S.L. (1967) Fluid Dynamics of Multiphase Systems, Blaisdell Publishing Co., Waltham, MA.Google Scholar
  6. 6.
    LeClair, B.P., Hamielec, A.E. and Pruppacher, H.R. (1970) J. Atmospheric Sci., 17,308–15.CrossRefGoogle Scholar
  7. 7.
    Clift, R. and Gauvin, W.H. (1971) Can. J. Chem. Eng., 49, 439–48.CrossRefGoogle Scholar
  8. 8.
    Clift, R. and Gauvin, W.H. (1970) Proceedings of Chemeca 70, Vol. 1, Butterworths, Melbourne, pp. 14–28.Google Scholar
  9. 9.
    Schiller, L. and Naumann, A. (1933). Ver Deu. Ing., 77, 318–29.Google Scholar
  10. 10.
    Kaskas, A. (1960) Diploma Research Thesis, Lehrstuhl für Verfahrens Technik der T.U. Berlin.Google Scholar
  11. 11.
    Happel, J. and Brenner, H. (1965) Low Reynolds Number Hydrodynamics, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  12. 12.
    Allen, T. (1975) Particle Size Measurement, 2nd edn., Chapman and Hall, London.Google Scholar
  13. 13.
    Zenz, F.A. and Othmer, D.F. (1960) Fluidization and Fluid Particle Systems, Reinhold, New York.Google Scholar
  14. 14.
    Kunii, D. and Levenspiel, O. (1969) Fluidization Engineering, Wiley, New York.Google Scholar
  15. 15.
    Govier, G.W. and Aziz, K. (1972) The Flow of Complex Mixtures in Pipes, Van Nostrand Reinhold, New York.Google Scholar
  16. 16.
    Albertson, M.L. (1953) Effects of shape on the fall velocity of gravel particles, Proc. 5th Iowa Hydraulics Conference, Iowa.Google Scholar
  17. 17.
    Dryden, H.L. et al. (1936) Measurements of intensity and scale of wind tunnel turbulence and their relation to the critical Reynolds number of spheres, N.A.C.A.T.R. Google Scholar
  18. 18.
    Fage, A. (1930) The drag of circular cylinders and spheres at high values of Reynolds numbers, Tech., Tep. Aero Research Comm., 1, 172–84.Google Scholar
  19. 19.
    Horner, S. (1935) Versuche mit Kugeln betreffend Kenzahl, Turbulenz and Oberflachen beschaffenheit, Luftfahrtforschung, 12, 42–54.Google Scholar
  20. 20.
    Platt, R.C. (1936) Turbulence factors of NACA wind tunnels as determined by spheres tests, N.A.C.A.T.R., 558.Google Scholar
  21. 21.
    Torobin, L.B. and Gauvin, W.H. (1959,1960). Fundamental aspects of solids-gas flow: Parts I-V, Can. J. Chem. Eng., 37,189–99,167–76,224–36,38,142–53,189–99.CrossRefGoogle Scholar
  22. 22.
    Uhlherr, P.H.T. and Sinclair, C.G. (1970) The effect of free-stream turbulence on the drag coefficient of spheres, Proceedings of Chemeca 70, Vol. 1, Butterworths, Melbourne, pp. 1–13.Google Scholar
  23. 23.
    Anderson, T.J. and Uhlherr, P.H.T. (1977) The influence of stream turbulence on the drag of freely entrained spheres. Proc. 6th Australasian Hydraulics and Fluid Mechanics Conference, Inst. Engrs Australia, pp. 541–5.Google Scholar
  24. 24.
    Zarin, N.A. (1970) Measurement of non-continuum and turbulence effects on subsonic sphere drag, N.A.S.A.C.R., 1585.Google Scholar
  25. 25.
    Martin, J.J., McCabe, W.L. and Monrod, C.C. (1951) Chem. Eng. Prog., 27, 91–4.Google Scholar
  26. 26.
    Happel, J. and Epstein, N. (1954) Ind. Eng. Chem., 46, 1187–94.CrossRefGoogle Scholar
  27. 27.
    Richardson, J.F. and Meikle, R.A. (1961) Trans. Inst. Chem. Engrs, 39, 357–62.Google Scholar
  28. 28.
    Rowe, P.N. (1961) Trans. Inst. Chem. Engrs, 39, 176–82.Google Scholar
  29. 29.
    Gunn, D.J. and Malik, A.A. (1966) Trans. Inst. Chem. Engrs, 44, 371–87.Google Scholar
  30. 30.
    Happle, J. (1958) AIChE J., 4, 197–201.CrossRefGoogle Scholar
  31. 31.
    Kuwabara, S. (1959) J. Phys. Soc. Japan., 14, 527.CrossRefGoogle Scholar
  32. 32.
    LeClair, B.P. and Hamielec, A.E. (1968) Ind. Eng. Chem. Fundamentals, 7, 542–9.CrossRefGoogle Scholar
  33. 33.
    Davidson, J.F. and Harrison, D. (1961) Fluidized Particles, Cambridge University Press, Cambridge.Google Scholar
  34. 34.
    Richardson, J.F. and Zaki, W.N. (1954) Chem. Eng. Sci., 3, 65–73.CrossRefGoogle Scholar
  35. 35.
    Richardson, J.F. and Zaki, W.N. (1954) Trans. Inst. Chem. Engrs, 32, 35–53.Google Scholar
  36. 36.
    Wen, C.Y. and Yu, Y.H. (1966) Chem. Eng. Prog. Symposium Series, 62, No. 62,100–11.Google Scholar
  37. 37.
    Vakhrushev, I.A. (1966) Drag coefficient of particles under hindered settling and in fluidized beds, Khimicheskaya Promyshlennost, 42.Google Scholar
  38. 38.
    Ergun, S. (1952) Chem. Eng. Prog., 48, 89–94.Google Scholar
  39. 39.
    Leva, M. (1959) Fluidization, McGraw-Hill, New York.Google Scholar
  40. 40.
    Wen, C.Y. and Simons, H.P. (1959) AIChE J., 5, 263–7.CrossRefGoogle Scholar
  41. 41.
    Yang, W.C. (1973) Ind. Eng. Chem. Fundamentals, 12, 349–52.CrossRefGoogle Scholar
  42. 42.
    Boothroyd, R.C. (1967) Trans. Inst. Chem. Engrs, 45, 297–310.Google Scholar
  43. 43.
    Soo, S.L. (1962) Ind. Eng. Chem. Fundamentals, 1, 33–7.CrossRefGoogle Scholar
  44. 44.
    McCarthy, H.E. and Olson, J.H. (1968) Ind. Eng. Chem. Fundamentals, 7, 471–83.CrossRefGoogle Scholar
  45. 45.
    Baw, P.S.H. and Peskin, R.L. (1971) J. Basic. Eng. Trans. ASME, 631–5.Google Scholar
  46. 46.
    Reddy, K.V.S. and Pei, D.C.T. (1969) Ind. Eng. Chem. Fundamentals, 8, 490–7.CrossRefGoogle Scholar
  47. 47.
    Nagarajan, M. and Murgatroyd, W. (1971) Aerosol Sci., 2, 15–22.CrossRefGoogle Scholar
  48. 48.
    Fortier, A. and Chen, C.P. (1976) J. de Mechanique, 15, 155–83.Google Scholar
  49. 49.
    Lunnon, R.G. (1926,1928) Proc. R. Soc., 110A, 302, 118A, 680.Google Scholar
  50. 50.
    Ingebo, R.D. (1956) NACA Report, TN 3762.Google Scholar
  51. 51.
    Painter, D.J. (1969) M. Eng. Thesis, McGill University.Google Scholar
  52. 52.
    Wang, C.C. (1969) M. Eng. Thesis, McGill University.Google Scholar
  53. 53.
    Owen, P.R. (1969) J. Fluid Mech., 39, 406–32.CrossRefGoogle Scholar
  54. 54.
    Ladenburg, R. (1907) Uber den Einfluss von Wandon auf die Bewegung einer Kugel in einer reibenden Flussigkeit, Ann. der Phys., 23, 447–58.CrossRefGoogle Scholar
  55. 55.
    Francis, A.W. (1933) Physics, 4, 403–13.CrossRefGoogle Scholar
  56. 56.
    Fidleris, V. and Whitmore, R.L. (1961) Br. J. Appl. Phys., 12, 490–4.CrossRefGoogle Scholar
  57. 57.
    McNown, J.S., Lee, H.M., McPherson, M.B. and Engez, S.M. (1948) Influence of boundary proximity on the drag of spheres, Proc. 7th Inst. Congress for App. Mech., 2(1), 17–29.Google Scholar
  58. 58.
    Uhlherr, P.H.T. (1965) Fluid particle dynamics, Ph.D. Thesis, Monash University.Google Scholar
  59. 59.
    Munroe, H.S. (1888) Trans. Am. Inst. Mining Mete. Engrs, 17, 637–47.Google Scholar
  60. 60.
    Richardson, J.F. and McLeman, N. (1960) Trans. Inst. Chem. Engrs, 38, 257–66.Google Scholar
  61. 61.
    Yousfl, Y. and Gau, G. (1974) Chem. Eng. Sci., 29, 1947–53.CrossRefGoogle Scholar
  62. 62.
    Plasynski, S.L, Dhodapkar, S.V. and Klinzing, G.E. (1994) NEPTIS-3, Kyoto, Japan, 21–9.Google Scholar
  63. 63.
    Cartwright, P., Singh, S., Bailey, A.G. and Rose, L.E. (1985) IEEE Transactions on Industry Applications, 1a-21, No. 2, 541–6.CrossRefGoogle Scholar
  64. 64.
    Jones, T.B. and King, J.L. (1991) Powder Handling and Electrostatics: Understanding and Preventing Hazards, Lewis Publishers, Chelsea, MI.Google Scholar
  65. 65.
    Reboux, P. (1954) Phenomènes Fluidization, Assoc. Française de Fluidization, Paris.Google Scholar
  66. 66.
    Rowe, P.N. and Nienow, A.W. (1975) Chem. Eng. Sci., 30, 1365–9.CrossRefGoogle Scholar
  67. 67.
    Weber, M. (1974) Stromungs-Fordertechnik, Krausskopf-Verlag.Google Scholar
  68. 68.
    Pinchbeck, P.H. and Popper, F. (1956) Chem. Eng. Sci., 6, 57–64.CrossRefGoogle Scholar
  69. 69.
    Goddard, K.A. and Richardson, J.F. (1969) Chem. Eng. Sci., 24, 363–7.CrossRefGoogle Scholar
  70. 70.
    Bourgeois, P. and Grenier, P. (1968) Can. J. Chem. Eng., 46, 325–8.CrossRefGoogle Scholar
  71. 71.
    Richardson, J.F. (1971) in Fluidization (eds J.F. Davidson and D. Harrison), Academic Press, London.Google Scholar
  72. 72.
    Geldart, D. (1973) Powder Technology, 7, 285–92.CrossRefGoogle Scholar
  73. 73.
    Geldart, D. and Abrahamsen, A.R. (1978) Powder Technology, 19, 133–6.CrossRefGoogle Scholar
  74. 74.
    Thiel, W.J. and Potter, O. (1977) Ind. Eng. Chem. Fundamentals, 16, 242–7.CrossRefGoogle Scholar
  75. 75.
    Doig, I.D. (1975) South African Mech. Eng., 25, 394–403.Google Scholar
  76. 76.
    Muschelknautz, E. and Krambrock, W. (1969) Chem. Ing, Tech., 41, 1164–72.CrossRefGoogle Scholar
  77. 77.
    Leung, L.S. (1977) Proceedings of Pneumotransport 3, BHRA Fluid Engineering, Cranfield, UK, pp. 272–4.Google Scholar
  78. 78.
    Flain, H.J. (1967) Proceedings of Pneumotransport 3, BHRA Fluid Engineering, Cranfield, UK, p. 281.Google Scholar

Copyright information

© G.E. Klinzing, R.D. Marcus and F. Rizk 1997

Authors and Affiliations

  • G. E. Klinzing
    • 1
  • R. D. Marcus
    • 2
    • 3
  • F. Rizk
    • 4
  • L. S. Leung
    • 5
  1. 1.Chemical EngineeringUniversity of PittsburghUSA
  2. 2.Morgan Education Technologies (Pty) LtdSouth Africa
  3. 3.Key Centre for Bulk Solids and Particulate TechnologiesUniversity of NewcastleAustralia
  4. 4.Technical Research and Development DepartmentBASF-AktiengesellschaftLudwigshafenGermany
  5. 5.Commonwealth Scientific and Industrial Research OrganizationAustralia

Personalised recommendations