Advertisement

Instrumentation

  • G. E. Klinzing
  • R. D. Marcus
  • F. Rizk
  • L. S. Leung
Part of the Powder Technology Series book series (POTS, volume 8)

Abstract

In order to ensure a reliable pneumatic transport system it is necessary to measure and monitor the flow conditions from delivery to transport and recovery. When beginning to search for instrumentation to perform such functions, one goes directly to the single phase experience. Flowmeters and pressure sensing devices come first to mind. Quickly one finds the flowmeters to be inadequate and special care must be shown in the use of the sensing devices so they are not damaged or clogged. With the advent of computer control measured signals need to be changed into electrical impulses of voltages or currents to be transmitted to the computer where detailed logic is only limited by one’s creativity. Pneumatic transport is and will be controlled in this manner.

Keywords

Particle Velocity Mass Flow Rate Pressure Fluctuation Laser Doppler Velocimeter Screw Conveyor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davies, G.S. (1981) Proc. Powtech 81, Birmingham, England.Google Scholar
  2. 2.
    Crowe, C.T. (1982) Final Report on Contract DOE DE-FG22–80PC30212.Google Scholar
  3. 3.
    Klinzing, G.E. (1981) Gas-Solid Transport, McGraw-Hill, New York.Google Scholar
  4. 4.
    Mathur, M.P. and Klinzing, G.E. (1983) CE Symp. Series, 222.Google Scholar
  5. 5.
    Smith, R. and Klinzing, G.E. (1989) AIChE J., 32, 313.CrossRefGoogle Scholar
  6. 6.
    Mathur, M.P. and Klinzing, G.E. (1983) Fine Particle Soc. Meeting, Honolulu, August.Google Scholar
  7. 7.
    Mathur, M.P. (1982) Proc. 1982 Symp. on Instrumentation and Control for Fossil Energy Processes, Houston, Texas, June.Google Scholar
  8. 8.
    Brewster, B.S. and Saeder, J.D. (1980) AIChE J., 36, 325.CrossRefGoogle Scholar
  9. 9.
    Cheng, L., Tung, S.K. and Soo, S.L. (1980) Trans. ASME J. Eng. Powder, 91, 135.Google Scholar
  10. 10.
    Soo, S.L, Ihrig, H.G. Jr and El Kouch, A.F. (1969) Trans. ASME J. Basic Eng., 82D, 609.CrossRefGoogle Scholar
  11. 11.
    Cheng, L. and Soo, S.L. (1970). J. Appl. Phys., 41, 585.CrossRefGoogle Scholar
  12. 12.
    King, P. (1973) Proceedings of Pneumotransport 2, Paper D2, BHRA Fluid Engineering, Cranfield.Google Scholar
  13. 13.
    Rader, J, Prakash, A. and Klinzing, G.E. (1995) AIChE Symposium Series on Fluidization and Fluid Particle Systems, 91, No. 308, 154–63.Google Scholar
  14. 14.
    Sheen, S.H. and Raptis, A.C. (1979) Tech. Memorandium, No. TM07, Argonne National Laboratory, Sept.Google Scholar
  15. 15.
    Zacharias, E.M. Jr and Franz, D.W. (1973) Chemical Engineering, January 22.Google Scholar
  16. 16.
    Thomson, F.M. (1971) Bulk Material Handling, Vol. 2 (ed. M.C. Hawk), University of Pittsburgh.Google Scholar
  17. 17.
    Kerker, L. (1977) Verfahrentechnik, 11, No. 9, 549.Google Scholar
  18. 18.
    Chao, B.T, Perez-Bianco, H, Saunders, J.H. and Soo, S.L. (1979) Proc. Symp. on Powder and Bulk Handling of Solids Conf, Philadelphia, May.Google Scholar
  19. 19.
    Kolansky, M.S., Weinbaum, S. and Pfeffer, R. (1969) Proceedings of Pneumotransport 3, BHRA Fluid Engineering, Cranfield.Google Scholar
  20. 20.
    Corino, E.R. and Brodkey, R.S. (1969) J. Fluid Mech., 37, 1.CrossRefGoogle Scholar
  21. 21.
    Scott, A.M. (1978) Proceedings of Pneumotransport 4, Paper A3, BHRA Fluid Engineering, Cranfield.Google Scholar
  22. 22.
    Rizk, F. (1973) Dissertation, University of Karlsruhe, Germany.Google Scholar
  23. 23.
    Hariu, O.H. and Molstad, M.E. (1949) Ind. Eng. Chem., 41, 1148.CrossRefGoogle Scholar
  24. 24.
    Capes, C.E. and Nakamura, K. (1973) Can. J. Chem. Eng., 51, 31.CrossRefGoogle Scholar
  25. 24.
    Capes, C.E. and Nakamura, K. (1973) Can. J. Chem. Eng., 51, 31.CrossRefGoogle Scholar
  26. 26.
    Ikemori, K. and Munakata, H. (1971) Proceedings of Pneumotransport 1, BHRA Fluid Engineering, Cranfield.Google Scholar
  27. 27.
    Kobayashi, S. and Miyahara, S. (1984) Keisoku Jidoseigyo Gakkai Ronbushu, 20, 529.Google Scholar
  28. 28.
    Davies, C. (1994) Pneumatic Conveying Symposium, Particle Tech. Forum, AIChE Meeting, Denver, CO.Google Scholar
  29. 29.
    Qui, H.H., Sommerfeld, M. and Durst, F. (1991) Meas. Sei. Technol, 2, 455–63.CrossRefGoogle Scholar
  30. 30.
    Sommerfeld, M. (1993) ASME FED Vol. 166, Gas-Solid Flow, Book No. H00806.Google Scholar
  31. 31.
    Cabrejos, F.J. and Klinzing, G.E. (1992) ASME 92-WA/F-3, Anaheim.Google Scholar
  32. 32.
    Borzone, L.A., Klinzing, G.E. and Yang, W.-C. (1991) US Patent 5,022,274.Google Scholar
  33. 33.
    Dhodapkar, S.V. and Klinzing, G.E. (1993) Powder Tech., 74, 179–95.CrossRefGoogle Scholar
  34. 34.
    Cabrejos, F.J. and Klinzing, G.E. (1995) Powder Tech., 84, 157–63.CrossRefGoogle Scholar

Copyright information

© G.E. Klinzing, R.D. Marcus and F. Rizk 1997

Authors and Affiliations

  • G. E. Klinzing
    • 1
  • R. D. Marcus
    • 2
    • 3
  • F. Rizk
    • 4
  • L. S. Leung
    • 5
  1. 1.Chemical EngineeringUniversity of PittsburghUSA
  2. 2.Morgan Education Technologies (Pty) LtdSouth Africa
  3. 3.Key Centre for Bulk Solids and Particulate TechnologiesUniversity of NewcastleAustralia
  4. 4.Technical Research and Development DepartmentBASF-AktiengesellschaftLudwigshafenGermany
  5. 5.Commonwealth Scientific and Industrial Research OrganizationAustralia

Personalised recommendations