Some comments on: the flow behaviour of solids from silos; wear in pneumatic conveying systems; ancillary equipment

  • G. E. Klinzing
  • R. D. Marcus
  • F. Rizk
  • L. S. Leung
Part of the Powder Technology Series book series (POTS, volume 8)


There are a number of additional facets in the design of pneumatic conveying systems which in their own right could form the basis of a separate handbook. An awareness of the intricacies of silo and hopper design, wear in pneumatic conveying systems and the type and characteristics of a number of essential hardware components are deemed to be important information for the system designer.


Flow Behaviour Impact Angle Ball Valve Shear Cell Ultra High Molecular Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jenike, A.W. (1964) Bulletin 123, University of Utah, USA.Google Scholar
  2. 2.
    Arnold, P.C., McLean, A.G. and Roberts, A.W. (1980) Bulk Solids Storage, Flow and Handling, Tunra, University of Newcastle, NSW, Australia.Google Scholar
  3. 3.
    Stahura, R.P. (1985) Introduction to flow aids, Proc. Int. Materials Handling Conference, SAI Materials Handling, SAI Mech. E., University of Witwatersrand, Johannesburg, Sept.Google Scholar
  4. 4.
    Simpson, K. (1935) Bridgebreakers, Proc. Int. Materials Handling Conference, SAI Materials Handling, SAI Mech. E., University of Wiwatersrand, Johannesburg, Sept.Google Scholar
  5. 5.
    Roberts, A. (1985) Effect of vibration of bulk solids flow, Proc. Int. Materials Handling Conference, SAI Materials Handling, SAI Mech. E., University of Witwatersrand, Johannesburg, Sept.Google Scholar
  6. 6.
    Thomas, R. (1985) Hopper linings, fact or fiction? Proc. Int. Materials Handling Conference, SAI Materials Handling, SAI Mech. E., University of Witwatersrand, Johannesburg, Sept.Google Scholar
  7. 7.
    Kang, CT., Chang, S.L., Berks, N. and Pettit, F.S. (1983) Proc. JMIS-3. Google Scholar
  8. 8.
    National Materials Advisory Board (1977) Report No. NMAB-334, National Academy of Sciences, USA.Google Scholar
  9. 9.
    Adler, W.F. (1979) NTIS, Report No. ETI-CR 79–680.Google Scholar
  10. 10.
    Ruff, A.W. and Weiderhorn, S.M. (1979) Erosion by Solid Particles Impact; Treatise on Materials Science and Technology, Vol. 16, (ed. CM. Preece), Academic Press, New York.Google Scholar
  11. 11.
    Finnie, I- (1960) Wear, 3, 87.CrossRefGoogle Scholar
  12. 12.
    Finnie, I., Levy, A. and McFadden, D.H. (1977) Fundamental Mechanisms of Erosive Wear of Ductile Materials by Solid Particles; Erosive: Prevention and Useful Applications, (ed. W.F. Adler), ASTM STP 664.Google Scholar
  13. 13.
    Bitter, J.G.A. (1963) Wear, 6, 5.CrossRefGoogle Scholar
  14. 14.
    Bitter, J.G.A. (1963) Wear, 6, 169.CrossRefGoogle Scholar
  15. 15.
    Winter, R.E. and Hutchings, I.M. (1975) Wear, 34, 141.CrossRefGoogle Scholar
  16. 16.
    Winter, R.E. and Hutchings, I.M. (1974) Wear, 29, 181.CrossRefGoogle Scholar
  17. 17.
    Mamoun, M.M. (1975) Technical Report ANL-75-XX3, Argonne National Laboratory.Google Scholar
  18. 18.
    Jahamir, S. (1980) Wear, 61, 309.CrossRefGoogle Scholar
  19. 19.
    Bellman, R. Jr and Levy, A. (1980) Technical Report, Lawrence, Berkeley Laboratory, LBL-10289.Google Scholar
  20. 20.
    Follansbee, P.S. (1980) Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh.Google Scholar
  21. 21.
    Evans, A.G. and Willshaw, T.R. (1977) Mater. J. Sei., 12, 97.CrossRefGoogle Scholar
  22. 22.
    Tilly, G.P. (1969) Erosion caused by air borne particles, Wear, 14, 63–79.CrossRefGoogle Scholar
  23. 23.
    Mason, J.S. and Smith, B.V. (1972) The erosion of bends by pneumatically conveyed suspensions of abrasive particles, Powder Technoi, 6, 323–35.CrossRefGoogle Scholar
  24. 24.
    Sheldon, G.L. and Finnie, I. (1966) On the ductile behaviour of nominally brittle materials during erosive cutting, Trans. ASME, 88b, 307–92.Google Scholar
  25. 25.
    Snow, C. (1984) The pneumatic transfer of dried slimes over long distances, M.Sc. Dissertation, University of Witwatersrand, Johannesburg, Feb.Google Scholar
  26. 26.
    Smoldyrew, A.Y.E. (1980) Pipeline Transport — Principles of Design, Terraspace Inc., p. 265.Google Scholar
  27. 27.
    Goodwin, G.E., Sage, W. and Tilly, G.P. (1970) Study of erosion by solids particles, Proc. Inst. Mech. Engrs, 184, Part I, 279–92.CrossRefGoogle Scholar
  28. 28.
    Mills, D. and Mason, J.S. (1981) Conveying velocity effects in bend erosion, J. Pipelines, 1, 69–81.Google Scholar
  29. 29.
    Borzone, L.A. and Klinzing, G.E. (1990) Powder Technoi, 62, 277–90.CrossRefGoogle Scholar
  30. 30.
    Tabakoff, J. (1984) J. Fluid Eng., 106, 125.CrossRefGoogle Scholar
  31. 31.
    Agarwal, V.K., Mills, D. and Mason, J.S. (1985) Some aspects of bend erosion in pneumatic conveying system pipelines, Bulk Solids Handling, 5, No. 5, 1085–90.Google Scholar
  32. 32.
    Mills, D. and Mason, J.S. (1981) The significance of penetrative wear in pipe bend erosion, Proc. Int. Conf. on Optimum Resources Utilization Through Tribo-Technology and Maintenance Management, Indian Institute of Technology, Delhi, Dec.Google Scholar
  33. 33.
    Wright, G.J. (1994) Ph.D. Dissertation, Witwatersrand University, Johannesburg.Google Scholar
  34. 34.
    Marcus, R.D., Burgess, H., Fenderico, D.M., Fritella, A. and Vogel, R. (1980) The application of pneumatic conveying techniques to the mining industry, Proc. 5 th Int. Conf. on the Pneumatic Transport of Solids in Pipes, BHRA Fluid Engineering, Cranfield.Google Scholar
  35. 35.
    Mohlmann, J.D. (1985) Parameters influencing the pneumatic conveying of large rock particles, Ph.D. Thesis, Faculty of Engineering, University of Witwatersrand, Johannesburg.Google Scholar
  36. 36.
    Kaiman, H. (1994) Proceedings of Pneumatic Conveying Workshop, First Particle Technology Forum, Denver, CO.Google Scholar
  37. 37.
    Vaux, W.G. and Fellers, A.W. (1981) AIChE. Sym. Series, Recent Advances in Fluidization,11, No. 205, 107–15.Google Scholar
  38. 38.
    Kokkoris, A. and Turton, R. (1987) AIChE Sym. Series, 87, No. 281, 20–31.Google Scholar
  39. 39.
    Mills, D. (1990) Pneumatic Conveying Design Guide, Butterworths, London, 213–14.Google Scholar
  40. 40.
    Sommerfeld, M., Huber, N. and Wachter, P. (1993) ASME FED Vol. 166, Gas-Solid Flows, Book No. H00806, 183–91.Google Scholar
  41. 41.
    Sommerfeld, M. (1990) ASME FED Vol. 91, Book No. H00596, 11–18.Google Scholar
  42. 42.
    Sommerfeld, M. (1992) Intl. J. Multiphase Flow, 18, 905–26.CrossRefGoogle Scholar
  43. 43.
    Sommerfeld, M. (1995) ASME FED Symposium on Gas-Solids Flow, Hilton Head, SC.Google Scholar
  44. 44.
    Schaffer, F.D. and Ramer, E.R. (1989) Proced. Intl. Conf. on Mechanics of Two-Phase Flows, Taipei, Taiwan.Google Scholar
  45. 45.
    Louge, M.Y, Mastorakos, E. and Jenkins, J.T. (1991) J. Fluid Mech., 231, 345–9.CrossRefGoogle Scholar

Copyright information

© G.E. Klinzing, R.D. Marcus and F. Rizk 1997

Authors and Affiliations

  • G. E. Klinzing
    • 1
  • R. D. Marcus
    • 2
    • 3
  • F. Rizk
    • 4
  • L. S. Leung
    • 5
  1. 1.Chemical EngineeringUniversity of PittsburghUSA
  2. 2.Morgan Education Technologies (Pty) LtdSouth Africa
  3. 3.Key Centre for Bulk Solids and Particulate TechnologiesUniversity of NewcastleAustralia
  4. 4.Technical Research and Development DepartmentBASF-AktiengesellschaftLudwigshafenGermany
  5. 5.Commonwealth Scientific and Industrial Research OrganizationAustralia

Personalised recommendations