Skip to main content

Rheological Weakening of Subducted Slabs Due to the Persistence of Metastable Olivine Down to 600 Km Depth

  • Chapter
Upper Mantle Heterogeneities from Active and Passive Seismology

Part of the book series: NATO ASI Series ((ASDT,volume 17))

  • 207 Accesses

Abstract

It has been hypothesized that deep earthquakes in subducting slabs might result from transformational faulting in cold peridodite wedges containing metastable olivine to depths of more than 600 km. The slab instability arises then from sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser phase [1, 2]. One pre-supposition of this hypothesis is that the untransformed cold interior of fast subducting slabs is acting as a stress-guide for the slab down to 600 km depth. The viscosity of a cold (olivine) wedge extrapolated to low temperatures of about ~850 K is indeed extremely high and no deformation seem to be possible on the geological timescale. On the other hand, seismic tomography reveals that slab bending seems to be possible in some of the western Pacific subduction zones [3, 4]. Hence, mechanisms for the rheological weakening of subducted slabs are called for.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirby, S. H., Durham, W. B., and Stern, L. A. (1991) Mantle phase changes and deep-earthquake faulting in subducting lithosphere, Science 252, 216–225.

    Article  Google Scholar 

  2. Kirby, S. H., Stein, S., Okal, E., and Rubie, D. C. (1996) Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere, Rev. Geophys. 34, 261–306.

    Article  Google Scholar 

  3. van der Hilst, R. D., Engdahl, E. R., Spakman, W., and Nolet, G. (1991) Tomographic imaging of subducted lithosphere below northwest Pacific island arcs, Nature 353, 37–43.

    Article  Google Scholar 

  4. van der Hilst, R. D. (1995) Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench, Nature 374, 154–157.

    Article  Google Scholar 

  5. Vaughan, P. J. and Coe, R. S. (1981) Creep mechanism in Mg2GeO4: Effects of a phase transition, J. Geophys. Res. 86, 389–404.

    Article  Google Scholar 

  6. Rubie, D. C. (1984) The olivine-spinel transformation and the rheology of sub-ducting lithosphere, Nature 308, 505–508.

    Article  Google Scholar 

  7. Ito, E. and Sato, H. (1991) Aseismicity in the lower mantle by superplasticity of the descending slab, Nature 351, 140–141.

    Article  Google Scholar 

  8. Burnley, P. C., Green II, H. W., and Prior, D. J. (1991) Faulting associated with the olivine to spinel transformation in Mg2GeO4 and its implications for deep-focus earthquakes, J. Geophys. Res. 96, 425–443.

    Google Scholar 

  9. Brearley, A. J., Rubie, D. C., and Ito, E. (1992) Mechanisms of the Transformations Between the a, ß and -y Polymorphs of Mg2SiO4 at 15 GPa, Phys. Chem. Minerals 18, 343–358.

    Article  Google Scholar 

  10. Fujino, K. and Irifune, T. (1992) TEM studies on the olivine to modified spinel transformation in Mg2SiO4, in Y. Syono and M. H. Manghnani (eds.), High Pressure Research: Application to Earth and Planetary Sciences, Terra Sci. Publ., Tokyo, pp. 237–243.

    Google Scholar 

  11. Riedel, M. R. and Karato, S. (1996) Microstructural development during nucleation and growth, Geophys. J. Int. 125, 397–414.

    Article  Google Scholar 

  12. Rubie, D. C. and Ross II, C. R. (1994) Kinetics of the olivine-spinel transformation in subducting lithosphere: experimental constraints and implications for deep slab processes, Phys. Earth Planet. Inter. 86, 223–241.

    Google Scholar 

  13. Karato, S. (1997) Phase transformations and the rheological properties of mantle minerals, in D. J. Crossley (ed.), Earth’s Deep Interior (The Doornbos Memorial Volume), Gordon and Breach Science Publ., Amsterdam, pp. 223–272.

    Google Scholar 

  14. Molnar, P., Freedman, D., and Shih, J. S. H. (1979) Lengths of intermediate and deep seismic zones and temperatures in downgoing slabs of lithosphere, Geophys. J. Royal Astron. Soc. 56, 41–54.

    Article  Google Scholar 

  15. Lay, T. (1994) The fate of descending slabs, Annu. Rev. Earth Planet. Sci. 22, 33–62.

    Article  Google Scholar 

  16. McKenzie, D. P. (1969) Speculations on the consequences and causes of plate motions, Geophys. J. Royal Astron. Soc. 18, 1–32.

    Article  Google Scholar 

  17. Däßler, R., Yuen, D. A., Karato, S., and Riedel, M. R. (1996) Two-dimensional modeling of thermo-kinetic coupling and the consequences on the phase boundaries of subducting slabs, Phys. Earth Planet. Inter. 94, 217–239.

    Article  Google Scholar 

  18. Ashby, M. F. and Verrall, R. A. (1977) Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle, Phil. Trans. Royal Soc. London A 288, 59–95.

    Article  Google Scholar 

  19. Goetze, C. and Evans, B. (1979) Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics, Geophys. J. Royal Astron. Soc. 59, 463–478.

    Article  Google Scholar 

  20. Riedel, M. R. and Karato, S. (1997) Grain-size Evolution in Subducted Oceanic Lithosphere Associated with the Olivine-Spinel Transformation and Its Effects on Rheology, Earth Planet. Sci. Lett. 148, 27–43.

    Article  Google Scholar 

  21. Turcotte, D. L. and Schubert, G. (1982) Geodynamics. Applications of continuum physics to geological problems, John Wiley & Sons, New York.

    Google Scholar 

  22. Wortel, M. J. R. and Vlaar, N. J. (1988) Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere, PAGEOPH 128, 625–659.

    Article  Google Scholar 

  23. Green, H. W. and Burnley, P. C. (1989) A new self-organizing mechanism for deep-focus earthquakes, Nature 341, 733–737.

    Article  Google Scholar 

  24. Wortel, M. J. R. (1982) Seismicity and rheology of subducted slabs, Nature 296, 553–556.

    Article  Google Scholar 

  25. Kirby, S. H. (1995) Intraslab earthquakes and phase changes in subducting lithosphere, Rev. Geophys. Supplement, U.S. National report to IUGG 1991–1994, 287297.

    Google Scholar 

  26. Bebout, G. E., Scholl, D. W., Kirby, S. H., and Platt, J. P., eds. (1996) Subduction: Top to Bottom, American Geophysical Union, Washington.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Riedel, M.R., Karato, S. (1997). Rheological Weakening of Subducted Slabs Due to the Persistence of Metastable Olivine Down to 600 Km Depth. In: Fuchs, K. (eds) Upper Mantle Heterogeneities from Active and Passive Seismology. NATO ASI Series, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8979-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8979-6_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4966-7

  • Online ISBN: 978-94-015-8979-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics