Skip to main content

Biologically Inspired Recognition Chemistry for Biosensors

Design of Recognition Elements for Ion-selective Electrodes (ISEs)

  • Chapter
Book cover Biosensors for Direct Monitoring of Environmental Pollutants in Field

Part of the book series: NATO ASI Series ((ASEN2,volume 38))

Abstract

The nature of the interactions between biomolecules, like proteins and enzymes, and smaller molecules or ligands has prompted the development of novel recognition elements for ion-selective electrodes. This article will focus on biomimetic ionophore design and polymer imprinting as approaches to incorporate biorecognition elements into ISEs. From the interaction of arginine residues in proteins with oxoanions, guanidinium functionalities were incorporated in simpler and sturdier organic compounds to result in ionophores selective to hydrogen sulfite and to salicylate. The preparation of an imprinted polymer complimentary in size, shape and charge to the analyte resulted in the development of polypyrrole-based nitrate-selective electrodes that were later incorporated in a gas sensor for NOx.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Voet, D. and Voet, J.G. (1990) Biochemistry,John Wiley & Sons, New York

    Google Scholar 

  2. Freifelder, D. (1982) Physical Biochemistry,W.H. Freeman and Company, New York

    Google Scholar 

  3. Arnold, M.A. and Meyerhoff, M.E. (1988) Recent advances in the development and analytical applications of biosensing probes, Crit. Rev. Anal. Chem. 20, 149–196

    Article  CAS  Google Scholar 

  4. Guilbault, G.G. and Kauffmann, J.M. (1987) Enzyme-based electrodes as analytical tools, Biotechnol. Appl. Biochem. 9, 95–113

    CAS  Google Scholar 

  5. Bowers, L.D. and Can, P.W. (1976) Applications of immobilized enzymes in analytical chemistry, Anal. Chem. 48, 544A - 558A

    CAS  Google Scholar 

  6. Guilbault. G.G. (1968) Use of enzymes in analytical chemistry, Anal. Chem. 40, 459R-471 R

    Google Scholar 

  7. Lu, B., Xie, J., Lu, C., Wu, C. and Wei, Y. (1995) Oriented immobilization of Fab’ fragments on silica surfaces, Anal. Chem. 67, 83–87

    Article  CAS  Google Scholar 

  8. Decher, G., Lehr, B., Lowack, K., Lvov, Y. and Schmitt, J. (1994) New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA, Biosens. Bioelectron. 9, 677–684

    Article  CAS  Google Scholar 

  9. Rosevear, A. (1984) Immobilised biocatalysts-z critical review, J. Chem. Technol. Biotechnol. 34B, 127–150

    Article  Google Scholar 

  10. Weetall. H.H. (1974) Immobilized enzymes for analytical applications, Anal. Chem. 46, 602A - 615A

    Google Scholar 

  11. Hemândez, E.C., Witkowski, A., Daunert, S. and Bachas, L.G. (1995) Potentiometric enzyme electrode for urea based on electrochemically prepared polypyrrole membranes, Mikrochim. Acta 121, 63–72

    Article  Google Scholar 

  12. Wang, R., Sun, S., Bekos, E.J. and Bright, F.V. (1995) Dynamics surrounding cys-34 in native, chemically denatured, and silica-adsorbed bovine serum albumin, Anal. Chem. 67, 149–159

    Article  CAS  Google Scholar 

  13. Janata, J. (1992) Chemical sensors, Anal Chem. 64, 196R - 219R

    Article  CAS  Google Scholar 

  14. Spichiger, U.E. (1993) History of the development of magnesium-selective ionophores and magnesium-selective electrodes, Electroanalysis 5, 739–745

    Article  CAS  Google Scholar 

  15. Widmer, H.M. (1993) Ion-selective electrodes and ion optodes, Anal. Methods. Instrum. 1, 60–72

    CAS  Google Scholar 

  16. Pranitis, D.M., Telting-Diaz, M. and Meyerhoff, M.E. (1992) Potentiometric ion-, gas-, and bio-selective membrane electrodes. Crit. Rev. Anal. Chem. 23, 163–186

    Article  CAS  Google Scholar 

  17. Moore, C. and Pressman, B.C. (1964) Mechanism of action of valinomycin on mitochondria. Biochem. Blophys. Res. Commun. 15, 562–567

    Article  CAS  Google Scholar 

  18. Stefanac, Z. and Simon, W. (1967) Ion specific electrochemical behavior of macrotetrolides in membranes. Microchem. J. 12, 125–132

    Article  CAS  Google Scholar 

  19. Stryer. L. (1988) Biochemistry,W.H. Freeman and Company, New York

    Google Scholar 

  20. Hutchins. R.R. and Bachas, L.G. (1996) Biomimetic approach to the design of selective oxoanion receptors for use in membra ne-based potentiometric sensors, Biofunctional Membranes, Butterfield, D.A. editor, Plenum Press, New York, 35–44

    Google Scholar 

  21. Stepanek, R., Krautler, B., Schulthess, P., Lindemann, B., Ammann, D. and Simon, W. (1986) Aquocyanocobatl(III)-hepta(2-phenylethyl)-cobyrinate as a cationic carrier for nitrite-selective liquid-membrane electrodes, Anal. Chim. Acta 182, 83–90

    Article  CAS  Google Scholar 

  22. Schulthess, P., Ammann, D., Simon, W., Caderas, C., Stepanek, R. and Krautler, B. (1984) A lipophilic derivative of vitamin B12 as a selective carrier for anions, Hell,. Chim. Acta 67, 1026–1032

    Google Scholar 

  23. Schulthess, P., Ammann, D., Krautler, B., Caderas, C., Stepanek, R. and Simon, W. (1985) Nitrite-selective liquid membrane electrode, Anal. Chem. 57, 1397–1401

    Article  CAS  Google Scholar 

  24. Daunen, S. and Bachas, L.G. (1989) Anion-selective electrodes based on a hydrophobic vitamin B12 derivative, Anal. Chem. 61, 499–503

    Article  Google Scholar 

  25. Daunert, S., Wallace, S., Florido, A. and Bachas, L.G. (1991) Anion-selective electrodes based on electropolymerized porphyrin films, Anal. Chem. 63, 1676–1679

    Article  CAS  Google Scholar 

  26. Meyerhoff, M.E., Park, S.B., Yim, H.S. and Cha, G.S. (1990) Anion-selective polymeric membrane electrodes: progress and challenges, Methodology and Clinical Applications ofElectrochemical and Fiber Optic Sensors, Buiritt, M.F. and Moran, R.F. editors, University of Texas Medical Branch Printing and Reproduction Services, Galveston, 65–88

    Google Scholar 

  27. Yuan, R., Chai, Y.Q., Liu, D., Gao, D., Li, J.Z. and Yu, R.Q. (1993) Schiff base complexes of cobalt(II) as neutral carriers for highly selective iodide electrodes, Anal. Chem. 65, 2572–2575

    Article  CAS  Google Scholar 

  28. Chakrabarti, P. (1993) Anion binding sites in protein structures. J. Mol. Biol. 234, 463–482

    Article  CAS  Google Scholar 

  29. Schmidtchen, F.P., Gleich, A. and Schummer, A. (1989) Selective molecular hosts for anions, Pure Appl. Chem. 61, 1535–1546

    Article  CAS  Google Scholar 

  30. Hutchins, R.S., Barisal, P., Molina, P., Alajarin, M., Vidal, A. and Bachas, L.G. (1997) Salicylate- selective electrode based on a biomimetic guanidinium ionophore, Anal. Chem. 69, 1273–1278

    Article  CAS  Google Scholar 

  31. Hutchins, R.A., Molina, P., Alajarin, M., Vidal, A. and Bachas, L.G. (1994) Use of guanidinium ionophore in a hydrogen sulfite-selective electrode, Anal. Chem. 66, 3188–3192

    Article  CAS  Google Scholar 

  32. Flam, F. (1994) Molecular imprints make a mark, Science 263, 1221–1222

    Article  CAS  Google Scholar 

  33. Wulff, G., Sarhan, A. and Zabrocki, K. (1973) Enzyme-analogue built polymers and their use for the resolution of racemates, Tetrahedron Lett. 44, 4329–4332

    Article  Google Scholar 

  34. Wulff; G., Vesper, W., Grobe-Einsler, R. and Sarhan, A. (1977) Enzyme-analogue built polymers. 4. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates, Makromol. Chem. 178, 2799–2816

    Google Scholar 

  35. Wulff, G., Grobe-Einsler, R., Vesper, W. and Sarhan, A. (1977) Enzyme-analogue built polymers. 5. On the specificity distribution of chiral cavities prepared in synthetic polymers, Makromol. Chem. 178, 2817–2825

    Article  CAS  Google Scholar 

  36. Arshady, R. and Mosbach, K. (1981) Synthesis of substrate-selective polymers by host-guest polymerization, Makromol. Chem. 182, 687–692

    Article  CAS  Google Scholar 

  37. Rosatzin, r., Andersson, L.I., Simon, W. and Mosbach, K. (1991) Preparation of Cat+ selective sorbents by molecula• imprinting using polymerisable ionophores, J. Chem. Soc. Perkin Trans. 2, 1261–1265

    Google Scholar 

  38. Kriz, D., Ramstrom, O., Svensson, A. and Mosbach, K. (1995) Introducing biomimetic sensors based on molecularly imprinted polymers as recognition elements, Anal. Chem. 67, 2142–2144

    Article  CAS  Google Scholar 

  39. Matsui, J., Nicholls, I.A., Karube, I. and Mosbach, K. (1996) Carbon-carbon bond formation using substrate selective catalytic polymers prepared by molecular imprinting: an artificial class II aldolase, J. Org . Chem. 61, 5414–5417

    Article  CAS  Google Scholar 

  40. Asavapiriyanont, S., Chandler, G.K., Gunawardena, G.A. and Pletcher, D. (1984) The electrodeposition of polypyrrole films from aqueous solutions, J. Electroanal. Chem. 177, 229–244

    Article  CAS  Google Scholar 

  41. Shimidzu, T., Ohtani. A., lyoda, T. and Honda, K. (1987) Charge-controllable polypyrrole/polyelectrolyte composite membranes. Part II. Effect of incorporated anion size on the electrochemical oxidation-reduction process, J. Electroanal. Chem. 224, 123–135

    CAS  Google Scholar 

  42. Dong, S., Sun, Z. and Lu, Z. (1988) Chloride chemical sensor based on an organic conducting polypyrrole polymer, Analyst 113, 1525–1528

    Article  CAS  Google Scholar 

  43. Pearson, J.F., Slater, J.M. and Jovanovic, V. (1992) Coated-wire and composite ion-selective electrodes based on doped poly(pyrrole), Analyst 117, 1885–1890

    Article  CAS  Google Scholar 

  44. Dong, S., Sun, Z. and Lu, Z. (1988) A new kind of chemical sensor based on a conducting polymer film, J. Chem. Soc.. Chem. Commun. 993–995

    Google Scholar 

  45. Hutchins, R.S. and Bachas. L.G. (1995) Nitrate-selective electrode developed by electrochemically mediated imprinting/doping of polypyrrole, Anal. Chem. 67, 1654–1660

    Article  CAS  Google Scholar 

  46. Hernandez. E.C.. Mortensen, C. and Bachas, L.G. (1997) Development of NOx gas sensors based on nitrate-selective polypyrrole electrodes, Electroanalysis, submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hernández, E.C., Bachas, L.G. (1998). Biologically Inspired Recognition Chemistry for Biosensors. In: Nikolelis, D.P., Krull, U.J., Wang, J., Mascini, M. (eds) Biosensors for Direct Monitoring of Environmental Pollutants in Field. NATO ASI Series, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8973-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8973-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4959-9

  • Online ISBN: 978-94-015-8973-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics