Skip to main content

The Need for Electron Crystallography in Mineral Sciences

  • Chapter
Electron Crystallography

Part of the book series: NATO ASI Series ((NSSE,volume 347))

  • 985 Accesses

Abstract

Electron crystallography may largely contribute to mineral sciences. The present aim is to understand why and how, starting from the already existing examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yada, K. (1967) Study of chrysotile asbestos by high resolution electron microscopy, Acta Cryst. 23, 704–707.

    Article  Google Scholar 

  2. Yada, K. (1971) Study of the microstructures of chrysotile asbestos by high resolution microscopy, Acta Cryst. 5, 119–124.

    Google Scholar 

  3. Yada, K. (1979) Microstructures of chrysotile and antigorite by high resolution electron microscopy, Can. Miner. 17, 679–691.

    Google Scholar 

  4. Buseck, P.R. and Iijima, S. (1974) High resolution electron microscopy of silicates, Amer. Miner. 59, 1–21.

    Google Scholar 

  5. Wenk, H.R. (1976) Electron microscopy in mineralogy, Springer Verlag. Berlin

    Book  Google Scholar 

  6. O’Keefe, M.A., Buseck, P.R., Iijima, S. (1978) Computation of high-resolution TEM images of minerals, Nature 274, 322–324.

    Article  ADS  Google Scholar 

  7. Pinker, Z.G. (1953) Electron diffraction, Butterworth, London.

    Google Scholar 

  8. Zvyagin, B.B. (1967) Electron diffraction analysis of clay mineral structures, Plenum Press. New York.

    Book  Google Scholar 

  9. Drits, V.A. (1987) Electron diffraction and high-resolution electron microscopy of mineral structures, Springer Verlag, Berlin.

    Book  Google Scholar 

  10. Vainshtein, B K., Zvyagin, B.B. and Avilov, A.S. (1992) Electron diffraction structure analysis, in JM.Cowley (ed.), Electron diffraction techniques, Oxford University Press, Oxford, pp. 216–312.

    Google Scholar 

  11. Mellini, M. (1989) High resolution transmission electron microscopy and geology, Adv. Electrons Electr. Phys. 76, 281–326.

    Article  Google Scholar 

  12. Allen, F. (1992) Mineral definition by HRTEM: problems and opportunity, in P.R. Buseck (ed.),Minerals and reactions at the atomic scale: transmission electron microscopy, Rev. Miner. 27, 289–334.

    Google Scholar 

  13. Zvyagin, B.B. (1994) Electron diffraction analysis, in A.S. Marfunin (ed.), Advanced Mineralogy, vol. 1, Springer Verlag, Berlin, pp. 50–63.

    Google Scholar 

  14. Ferraris, G., Mellini, M. and Merlino, S. (1987) Electron diffraction and electron microscopy study of balangeroite and gageite: crystal structures, polytypism, and fiber texture, Amer. Miner. 72, 382–391.

    Google Scholar 

  15. Heinrich, A.R., Eggleton, R.A. and Guggenheim, S. (1994) Structure and polytypism of bementite, a modulated layer silicate, Amer. Miner., 79, 91–106.

    Google Scholar 

  16. Eggleton, R.A. and Guggenheim, S. (1994) The use of electron optical methods to determine the crystal structure of a modulated phyllosilicate: parsettensite, Amer. Miner. 79, 426–437.

    Google Scholar 

  17. Turner, S., Gorshkov,A.T. and Buseck, P.R. (1994) Tunnel-structure oxide minerals, in A.S. Marfunin (ed.), Advanced Mineralogy, vol. 1, Springer Verlag, Berlin, pp. 90–95.

    Google Scholar 

  18. Veblen, D.R. (1992) Electron microscopy applied to nonstoichíometry, polysomatism, and replacement reactions in minerals, in P.R. Buseck (ed.), Minerals and reactions at the atomic scale: transmission electron microscopy, Rev. Miner. 27, 181–230.

    Google Scholar 

  19. Li, F.H. and Hashimoto, H. (1984) Use of dynamical scattering in the structure determination of a minute fluorocarbonate mineral cebaite Ba3Ce2(CO3)5F2 by high resolution electron microscopy, Acta Cryst. B40, 454–461.

    Article  Google Scholar 

  20. Mellini, M., Ferraris, G. and Compagnoni, R. (1985) Carlosturanite: HRTEM evidence of a polysomatic series including serpentine, Amer. Miner. 70, 773–781.

    Google Scholar 

  21. Alberico, A., Baronnet, A., Belluso, E., Ferraris,G., Miehe, G., Prencipe, M., Rodewald, M. and Soboleva, S. (1996) Some evidences for revisiting the structural model of carlosturanite, Assoc. Ital. Criss., Abstracts Ale ssandria Meeting, P-67.

    Google Scholar 

  22. Mellini, M., Merlino, S. and Pasero, M. (1986) X-ray and HRTEM structure analysis of orientite, Amer. Miner. 71, 176–187.

    Google Scholar 

  23. Bonfield, J.F., Veblen, D.R. and Smith, D.J, (1991) The identification of naturaly occurring Ti02(B) by structure determination using high-resolution electron microscopy, image simulation, and distance least squares refinement, Amer. Miner. 76, 343–353.

    Google Scholar 

  24. Veblen, D.R. and Cowley, J.M. (1994) Direct imaging of point defects by HRTEM, in A.S. Marfunin (ed.), Advanced Mineralogy, vol. I, Springer Verlag, Berlin, pp. 172–173.

    Chapter  Google Scholar 

  25. Dorset, D.L. (1992a) Direct phasing in electron crystallography: determination of layer silicate structures, Ultramicroscopy 45, 5–14.

    Article  Google Scholar 

  26. Dorset, D.L. (1992b) Direct methods in electron crystallography. Structure analysis of boric acid, Acta Cryst. A48, 568–574.

    Article  Google Scholar 

  27. Wenk, H.R., Downing, K.H., Meisheng, H. and O’Keefe, M.A. (1992) 3D structure determination from electron microscope-images: electron crystallography of staurolite, Acta Cryst. A48, 700–716.

    Google Scholar 

  28. Wang, D.N., Hovmoller, S., Kihlborg, L. and Sundberg, M. (1988) Structure determination and correction for distortions in HREM by crystallographic image processing.,Ultramicroscopy 25, 303–316.

    Google Scholar 

  29. Zou, X. (1995) Electron crystallography of inorganic structures - theory and practice. Doctoral Dissertation, Stockolm University

    Google Scholar 

  30. Ferrow, E.A. and Hovmoller, S. (1993) Crystallographic image processing (CIP) and high-resolution transmission electron microscopy (HRTEM) studies of bannisterite: a 2:1 type modulated layer silicate, Eur. J. Mineral. 5, 181–188.

    Google Scholar 

  31. Ferrow, E.A., Wallenberg, L:R. and Skogby, H. (1993) Compositional control of plane group symmetry in tourmalines: an experimental and computer simulated TEM, crystallographic image processing, and Mossbauer spectroscopy study, Eur. J. Mineral. 5, 479–492.

    Google Scholar 

  32. Zou, X., Ferrow, E.F. and Hovmoller, S. (1995) Correcting for crystal tilt in HRTEM images of minerals: the case of orthopyroxene, Phys. Chem. Minerals 22, 517–523.

    Article  ADS  Google Scholar 

  33. Ilton, E.S. and Veblen, D.R. (1988) Copper inclusions in sheet silicates from porphiry Cu deposits, Nature 334, 516–518.

    Article  ADS  Google Scholar 

  34. Banfield, J.F. and Veblen, D.R. (1991) The structure and origin of Fe-bearing platelets in metamorphic rutile, Amer. Miner. 76, 113–127.

    Google Scholar 

  35. Baronnet, A. (1992) Polytypism and stacking disorder,- in P.R. Buseck (ed.),Minerals and reactions at the atomic scale: transmission electron microscopy, Rev. Mineral. 27, 231–288.

    Google Scholar 

  36. Veblen, D.R. (1991) Polysomatism and poly-somatic series: a review and applications, Amer. Miner. 76, 801–826.

    Google Scholar 

  37. Wang, S., Buseck, P.R. and Liu, J. (1995) High-angle annular dark-field microscopy of franckeite, Amer. Miner. 80, 1174–1178.

    Google Scholar 

  38. Ricolleau, C., Audinet, L., Gandais, M., Gacoin, T., Boilot, J.P. and Chamarro, M. (1996) Influence of growth conditions on the structural properties of CdSXSe1_x (x = 0.4 and x = 1) nanocrystals, J. Crystal Growth 159, 861–866.

    Article  ADS  Google Scholar 

  39. Buseck, P.R. and Self, P. (1992) Electron energy-loss spectrosocpy (EELS) and electron channelling (ALCHEMI), in P.R. Buseck (ed.), Minerals and reactions at the atomic scale: transmission electron microscopy, Rev. Mineral. 27, 141–180.

    Google Scholar 

  40. Epicier, T., O’Keefe, M.A. and Thomas, G (1990) Atomic imaging of 3:2 mullite, Acta Cryst. A46, 948–962.

    Article  Google Scholar 

  41. Garvie, L.A.J., Craven, A.J. and Brydson, R. (1994) Use of electron-energy loss near-edge fine structure in the study of minerals. Amer. Miner. 79, 411–425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mellini, M. (1997). The Need for Electron Crystallography in Mineral Sciences. In: Dorset, D.L., Hovmöller, S., Zou, X. (eds) Electron Crystallography. NATO ASI Series, vol 347. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8971-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8971-0_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4965-0

  • Online ISBN: 978-94-015-8971-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics