Skip to main content

Abstract

Many of the attractions of quantum wells in lasers derive from the properties of the density of states function of the two-dimensional electron system. The abrupt edge of the density of states as a function of energy provides a very high differential gain above transparency leading to significant reductions in threshold current in appropriately designed devices compared with their bulk counterparts. The effective density of states of a two-dimensional system has a linear dependence upon temperature which leads directly to an intrinsic linear temperature dependence of threshold current compared with the stronger “three-halves” dependence of a bulk material. Because of the benefits of these characteristics of the two-dimensional system, much of the modelling of quantum well lasers has understandably concentrated on the intrinsic gain-current characteristic of the quantum well active region. These calculations usually use an ideal, square, potential well and extrinsic non-radiative currents are neglected. In devices operating at wavelengths below about 1µm, where intrinsic Auger recombination is negligible, this approach has been reasonably successful in predicting trends in the room temperature threshold current with respect to parameters such as well width or cavity length. This is particularly true for the GaAs/A1GaAs material system which can be grown free of significant concentrations of non-radiative recombination centres.

To whom correspondence should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blood, P., Fletcher, E.D., Woodbridge, K., Heaseman, K.C., and Adams, A.R., (1989) Influence of the barriers on the temperature dependence of threshold current in GaAs/AIGaAs quantum well lasers, IEEE Journ Quantum Electron QE 25 1459–1467.

    Google Scholar 

  2. Bour, D P, Treat, D W, Thornton, R L, Geels, R S, and Welch, D F. (1993) Drift leakage current in AlGaInP quantum well lasers“, IEEE Journ Quantum Electron QE29 1337–1343.

    Google Scholar 

  3. Smowton, P.M., and Blood, P. (1995) GaInP-(AlGa)InP 670nm quantum well lasers for high temperature operation, IEEE Journ Quantum Electron QE-31 2159–2164.

    Google Scholar 

  4. Blood, P., Tsui, E. S-M., and Fletcher, E.D., (1989) Observations of barrier recombination in GaAs-AlGaAs quantum well structures, Appl Phys Letts 54 2218–2220

    Article  Google Scholar 

  5. Tsui, E.S-M., Blood, P., and Fletcher, E.D., (1992) Electroluminescent processes in quantum well structures, Semicond Sci Technol. 7 837–844.

    Article  Google Scholar 

  6. Wolfe, C.M., Holonyak, N., and Stillman, G.E., (1989) Physical Properties of Semiconductors, Prentice-Hall, Englewodd Cliffs, New Jersey, USA. p253.

    Google Scholar 

  7. Gault, M, Mawby, P, Adams, A R, and Towers, M. (1994) Two dimensional simulation of constricted mesa InGaAs/InP burried heterostructure lasers. IEEE Journ Quantum Electron QE-30 1691–1700.

    Google Scholar 

  8. Hamilton R A H, and Rees, P, (1993) Line broadening due to carrier-carrier scatering in quantum wIl heterostructures, Semicond. Sci and Technol. 8 728–734

    Article  Google Scholar 

  9. The band gap data used in this work originates from several sources and is summarised in: Smowton P M, and Blood P, Visible emitting (A1Ga)InP laser diodes, to be published in Strained quantum wells and their applications ed M O Manasreh, Gordon and Breach Science Publishers SA.

    Google Scholar 

  10. C H Molloy, University of Wales Cardiff, private communication

    Google Scholar 

  11. Ohba H, Ishikawa M, Sugawara H, Yamamoyo M, and Nakansisi T, (1986) Growth of high quality InGaAlP epilayers using methyl metalorganics and their applications to visible semiconductor lasers, Journ Crystal Growth 77 374–379.

    Article  Google Scholar 

  12. Smowton P M, and Blood P, (1995) Threshold current temperature dependence of GaInP 670nm quantum well lasers, Appl Phys Letts 67 12651267.

    Google Scholar 

  13. Honda H, Ikeda M, Mori, Y, Kaneko K and Watanabe N, (1985) The energylevels of Zn and Se in (AlGa)InP Japan Journ Appl Phys 24 L187–189

    Article  Google Scholar 

  14. Schubert E (1993) Doping in III-V Semiconductors Cambridge University Press.

    Google Scholar 

  15. Vial J., Billet S., Bsiesy A, Fishman G., Gaspard F., Herino R, Legion M., Madeare R., Michalcesku T., Miller F, and Romestaine F. (1993) Bright visible light emission from electro-oxidised porous silicon, Physica B, 185, 593–602.

    Article  Google Scholar 

  16. Canham L. (1990) Silicon quantum wire array fabrication by electrochemical dissosiation of wafers, Appl. Phys. Lett., 57, 1046–1048.

    Article  Google Scholar 

  17. Koch F. (1993) Models and mechanisms for the luminescence of porous Si, Mat.Rec.Soc.Symp.Proc., 298, 319–329.

    Article  Google Scholar 

  18. Arakawa, Y. and Yariv, A. (1986) QW lasers: Gain, spectra, dynamics, IEEE J. Quantum Electron. QE-22, 1887–1899.

    Google Scholar 

  19. Kirstaedter, N., Ledentsov, N.N., Grundmann, M., Bimberg, D., Ustinov, V.M., Ruvimov, S.S., Maximov, M.V., Kop’ev, P.S., Alferov, Zh.I., Richter, U., Werner, P., Gosele, U., and Heydenreich, J. (1994) Low threshold, large T0 injection laser emission from (InGa)As quantum dots, Electron. Lett. 30, 1416–1417.

    Article  Google Scholar 

  20. Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Ledentsov, N.N., Maksimov, M.V., Tsatsul’nikov, A.F., Bert, N.A., Kosogov, A.O., Kop’ev, P.S., Bimberg, D., and Alferov, Zh.I. (1995) Formation of stacked self-assembled InAs quantum dots in GaAs matrix for laser applications, Proc. MRS, Nov.27-Dec.01, 1995, Boston, USA, EE3. 6.

    Google Scholar 

  21. Gribnikov, Z.S. Hess, K. and Kosinovsky, G.A. (1995) Nonlocal and Nonlinear Transport in Semiconductors: Real Space Transfer Effects, J.Appl.Phys.77, N 4, p. 1337.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blood, P. et al. (1998). Modelling Quantum Well Laser Diode Structures. In: Balkanski, M., Andreev, N. (eds) Advanced Electronic Technologies and Systems Based on Low-Dimensional Quantum Devices. NATO ASI Series, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8965-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8965-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4964-3

  • Online ISBN: 978-94-015-8965-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics