Skip to main content

Cayley graphs and interconnection networks

  • Chapter
Graph Symmetry

Part of the book series: NATO ASI Series ((ASIC,volume 497))

Abstract

Due to recent developments of parallel and distributed computing, the design and analysis of various interconnection networks has been a main topic of research for the past few years and is still stimulated by the new technologies of communication networks such as optic fibers. There are many advantages in using Cayley (di)graphs as models for interconnection networks. This work first surveys some classes of Cayley graphs which are well studied as models of interconnection networks. Results and problems related to routings in networks are then presented, with emphasis on loads of nodes and links in routings.

UA 410, CNRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Akers and B. Krishnamurthy, Group graphs as interconnection networks, Proc. 14th Internat. Conf. Fault Tolerant Comput, 1984, 422–427.

    Google Scholar 

  2. S. Akers and B. Krishnamurthy, On group graphs and their fault tolerance, IEEE Trans. Comput 36 (1987), 885–888.

    Article  MATH  Google Scholar 

  3. S. Akers and B. Krishnamurthy, A group theoretic model for symmetric interconnection networks, IEEE Trans. Comput 38 (1989), 555–566.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Alspach, Cayley graphs with optimal fault tolerance, IEEE Trans. Comput 41 (1992), 1337–1339.

    Article  MathSciNet  Google Scholar 

  5. F. Annexstein and M. Baumslag, On the diameter and bisection size of Cayley graphs, Math. Systems Theory 26 (1993), 271–291.

    Google Scholar 

  6. F. Annexstein, M. Baumslag, and A. L. Rosenberg, Group action graphs and parallel architectures, SIAM J. Comput 19 (1990), 544–569.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.-M. Arnaudies and J. Bertin, Groupes, algèbres et géométrie, vol. 1, Ellipses, Paris, 1993.

    Google Scholar 

  8. L. Babai, W. M. Kantor, and A. Lubotzky, Small diameter Cayley graphs for finite simple groups, European J. Combin 10 (1989), 507–522.

    MathSciNet  MATH  Google Scholar 

  9. L. Babai and A. Seress, On the diameter of Cayley graphs of the symmetric group, J. Combin. Theory Ser. A 49 (1988), 175–179.

    Google Scholar 

  10. E. Bannai, T. Ito, On Moore graphs, J. Fac. Sci. Univ. Tokyo Sect. IA Math 20 (1973), 191–208.

    MathSciNet  MATH  Google Scholar 

  11. D. Barth, Private communication, 1996.

    Google Scholar 

  12. D. Barth, A. Germa, M.-C. Heydemann, and D. Sotteau, Emulating networks by bus networks: Application to trees and hypermeshes, Technical Report 1073, L.R.I., Orsay, 1996.

    Google Scholar 

  13. M. Baumslag, Cayley networks: a group-theoretic approach to the design and analysis of parallel networks, PhD thesis, The City University of New York, 1991.

    Google Scholar 

  14. M. Baumslag, On the fault tolerance of quasi-minimal Cayley networks, in:Advances in Comput. and Inf, ICCI ‘81, Lecture Notes in Comput. Sci. 497, Springer-Verlag, Berlin, 1992, 431–442.

    Google Scholar 

  15. C. Berge, Principes de combinatoire, Dunod, Paris, 1968.

    MATH  Google Scholar 

  16. C. Berge, Graphes et hypergraphes, Bordas, Paris, 1973.

    MATH  Google Scholar 

  17. J.-C. Bermond, ed., DAMIN, Discrete Applied Math. 37–38 (1992).

    Google Scholar 

  18. J.-C. Bermond, F. Comellas, and D. F. Hsu, Distributed loop computer networks: a survey, J. Parallel Distrib. Comput 24 (1995), 2–10.

    Article  Google Scholar 

  19. J.-C. Bermond, C. Delorme, and J. Quisquater, Strategies for interconnection networks: some methods from graph theory, J. Parallel Distrib. Comput 3 (1986), 433–449.

    Article  Google Scholar 

  20. J.-C. Bermond, C. Delorme, and J.-J. Quisquater, Table of large (A, D) graphs, Discrete Appl. Math 37–38 (1992), 575–577.

    Article  MathSciNet  Google Scholar 

  21. J.-C. Bermond, T. Kodate, and S. Perennes, Gossiping in Cayley graphs by packets, in: Conf. CCS95 (8th Franco-Japanese and 4th Franco-Chinese Conf. Combin. Comput. Sci. (Brest, July 1995)), Lecture Notes in Comput. Sci. 1120, Springer-Verlag, Berlin, 1996, 301–305.

    Google Scholar 

  22. P. Berthomé, A. Ferreira, and S. Perennes, Optimal information dissemination in star and pancake networks, in: Proc. 5th IEEE Symp. Parallel Distribut. Process, IEEE Press, 1993, 720–724.

    Google Scholar 

  23. L. Bhuyan and D. Agraval, Generalized hypercubes and hyperbus structures for a computer network, IEEE Trans. Comput 33 (1984), 323–333.

    Article  MATH  Google Scholar 

  24. N. Biggs, Algebraic Graph Theory, Cambridge University Press, 1974.

    Google Scholar 

  25. N. Biggs and A. White, Permutation Groups and Combinatorial Structures, London Math. Soc. Lecture Note Ser. 33, Cambridge University Press, 1979.

    Google Scholar 

  26. F. Boesch and R. Tindell, Circulants and their connectivities, J. Graph Theory 8 (1984), 487–499.

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Bollobas, Graph Theory. An Introductory Course, Graduate Texts in Math. 63, Springer-Verlag, New York, 1979.

    Google Scholar 

  28. J.A. Bondy and U.S.R. Murty, Graph Theory and Applications, Macmillan, London, 1976.

    Google Scholar 

  29. A. Bouabdallah, M.-C. Heydemann, J. Opatrny, and D. Sotteau, Embeddings of complete binary trees into star graphs, in: 19th Conf. Math. Foundations of Comput. Sci, Lecture Notes in Comput. Sci. 841, Springer-Verlag, Berlin, 1994, 266–275.

    Google Scholar 

  30. J. Brunat, M. Espona, M. Fiol, and O. Serra, On Cayley line digraphs, Discrete Math. 138 (1995), 147–159.

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Butler, Fundamental Algorithms for Permutation Groups, Lecture Notes in Comput. Sci. 559, Springer-Verlag, Berlin, 1991.

    Book  Google Scholar 

  32. J Calais, Eléments de la théorie des groupes, 2nd ed., Presses universitaires de France, Paris, 1996.

    Google Scholar 

  33. L. Campbell, G. Carlsson, M. Dinneen, V. Faber, M. Fellows, M. Langston, J. Moore, A. Mullhaupt, and H. Sexton, Small diameter symmetric networks from linear groups, IEEE Trans. Comput 41 (1992), 218–220.

    Article  Google Scholar 

  34. J. J. Cannon, Construction of defining relators for finite groups, Discrete Math. 5 (1973), 105–129.

    Article  MathSciNet  MATH  Google Scholar 

  35. F. Chung, E. Coffman, M. Reiman, and B. Simon, On the capacity and vertex-forwarding index of communication networks, IEEE Trans. Inform. Theory 33 (1987), 224–232.

    Google Scholar 

  36. F. Comellas and M. Fiol, Vertex-symmetric digraphs with small diameter, Discrete Appl. Math 58 (1995), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Comellas and M. Mitjana, Private communication, 1996.

    Google Scholar 

  38. F. Comellas and M. Mitjana, Broadcasting in cycle prefix digraphs, submitted to Discrete Appl. Math; DMAT Technical Report 05–9515, 1995.

    Google Scholar 

  39. G. Cooperman and L. Finkelstein, New methods for using Cayley graphs in interconnection networks, Discrete Appl. Math. 37–38 (1992), 95–118.

    Google Scholar 

  40. G. Cooperman, L. Finkelstein, and N. Sarawagi, Applications of Cayley graphs, in: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-8, 1990), Lecture Notes in Comput. Sci. 508, Springer-Verlag, Berlin, 1991, 367–378.

    Google Scholar 

  41. H.S.M. Coxeter and W. Moser, Generators and Relations for Discrete Groups, Springer-Verlag, New York, 1972.

    MATH  Google Scholar 

  42. S. Curran and J. Gallian, Hamiltonian cycles and paths in Cayley graphs and digraphs - a survey, preprint, 1996.

    Google Scholar 

  43. R.M. Damerell, On Moore graphs, Proc. Cambridge Philos. Soc 74 (1973), 227–236.

    Article  MathSciNet  MATH  Google Scholar 

  44. K. Day and A. Tripathi, Arrangements graphs: a class of generalized star graphs, Inform. Process. Lett 42 (1992), 235–241.

    Article  MathSciNet  MATH  Google Scholar 

  45. K. Day and A. Tripathi, A comparative study of topological properties of hypercubes and star graphs, IEEE Trans. Parallel Distrib. Systems 5 (1994), 31–38.

    Article  MathSciNet  Google Scholar 

  46. W. F. de la Vega and Y. Manoussakis, Computation of the forwarding index via flows: a note, Networks 24 (1994), 273–276.

    Google Scholar 

  47. J. de Rumeur, Communications dans les réseaux de processeurs, Études Rech. Inform., Masson, Paris, 1994.

    Google Scholar 

  48. O. Delmas, Communications par commutation de circuits dans les réseaux d’interconnexion, PhD thesis, Université de Nice - Sophia Antipolis, Laboratoire I3S-CNRS URA 1376, 1997.

    Google Scholar 

  49. C. Delorme, Graphes et hypergraphes sommet-transitifs, Technical Report 383, L.R.I., Orsay, 1987.

    Google Scholar 

  50. C. Delorme, Construction de graphes possédant des routages de plus court chemin chargeant également les arêtes, Technical Report 482, L.R.I., Orsay, 1989.

    Google Scholar 

  51. C. Delorme, Example of products giving large graphs with given degree and diameter, Discrete Appl. Math. 37–38 (1992), 157–167.

    Google Scholar 

  52. C. Delorme, Isomorphism of transposition graphs, Technical Report, L.R.I., Orsay, 1997

    Google Scholar 

  53. D. Désérable, A family of Cayley graphs on the hexavalent grid, to appear in Discrete Appl. Math., Special issue on Network Communication, 1997.

    Google Scholar 

  54. W. Dörfler, Every regular graph is a quasigroup graph, Discrete Math. 10 (1974), 181–183.

    Article  MathSciNet  MATH  Google Scholar 

  55. V. Dimakopoulos and N. Dimopoulos, Total exchange in Cayley networks, in: EuroPar96,Lecture Notes in Comput. Sci. 1123, Springer-Verlag, Berlin, 1996, 341–346

    Google Scholar 

  56. M. J. Dinneen and P. R. Hafner, New results on the degree/diameter problem, Networks 24 (1994), 359–367.

    Article  MathSciNet  MATH  Google Scholar 

  57. D. Dolev, J. Halpern, B. Simons, and H. Strong, A new look at fault tolerant network routing, Inform. and Comput 72 (1987), 180–196.

    Article  MathSciNet  MATH  Google Scholar 

  58. L. Doty, R. Goldstone, and C. Suffel, Cayley graphs with neighbor connectivity one, SIAM J. Discrete Math 9 (1997), 625–642.

    Article  MathSciNet  Google Scholar 

  59. R. N. Draper, An overview of supertoroidal networks, in: 3rd ACM Symp. Parallel Algorithms and Architectures 1991 95–102.

    Google Scholar 

  60. D.-R. Duh, G.-H. Chen, and D. F. Hsu, Combinatorial properties of generalized hypercube graphs, Inform. Process. Lett 57 (1996), 41–45.

    Article  MathSciNet  MATH  Google Scholar 

  61. F. Ergincan and J.-C. Bermond, Bus interconnection networks, to appear inDiscrete Appl. Math.

    Google Scholar 

  62. M. Escudero, J. Fabrega, and P. Morillo, Fault tolerance routings in double-loop networks, Ars Combin. A 25 (1988), 187–198.

    MathSciNet  Google Scholar 

  63. B. Elspas, Topological constrainst on interconnection limited logic, in: Proc. 5th Sympos. Switching Theory and Logical Design, IEEE, 1964, 133–147.

    Google Scholar 

  64. S Even and O. Goldreich, The minimal-length generating sequence problem is NP-hard, J. Algorithms 2 (1981), 311–313

    Google Scholar 

  65. V.Faber, J. Moore, and W. Y. C. Chen, Cycle prefix digraphs for symmetric interconnection networks, Networks 23 (1993), 641–649

    Google Scholar 

  66. X. G. Fang, C. H. Li, and C. Praeger, On orbital regular graphs and Frobenius graphs, preprint, Univ. of Western Australia, 1996

    Google Scholar 

  67. R. J. Faudree, Some strong variations of connectivity, in: Combinatorics, Paul Erdós is Eighty,Vol. 1 (D. Miklós, V.T. Sos, T. Szönyi, Eds.), Coll. Math. Soc. Janos Bolyai 64, Budapest, 1993, 125–144

    Google Scholar 

  68. R Feldmann and W. Unger, The cube-connected cycles network is a subgraph of the butterfly networkParallel Process. Lett. 2 (1992) 13–19.

    Google Scholar 

  69. D. Fortin, C. Kirchner, and P. Strogova, Routing in regular networks using rewriting, in: Proc. CADE Internat. Workshop on Automated Reasoning in Algebra (ARIA), (J. Slaney, ed.), 1994, 5–8.

    Google Scholar 

  70. J. Fournier, Le groupe d’automorphismes des graphes de Cayley engendrés par des transpositions, Mémoire de maîtrise, Université de Montréal, 1997.

    Google Scholar 

  71. P. Fragopoulou, Communication and fault tolerance algorithms on a class of interconnection networks, PhD thesis, Queen’s University, Kingston, Ont., 1995.

    Google Scholar 

  72. P. Fragopoulou and S. G. Akl, Optimal communication algorithms on star graphs using spanning tree constructions, J. Parallel Distrib. Comput 24 (1995), 55–71.

    Article  Google Scholar 

  73. P. Fragopoulou and S. G. Akl, Optimal communication primitives on the generalized hypercube network, J. Parallel Distrib. Comput 32 (1996), 173–187.

    Article  Google Scholar 

  74. P. Fragopoulou and S. G. Akl, Spanning graphs with applications to communication on a subclass of the Cayley graph based networks, submitted to Discrete Appl. Math

    Google Scholar 

  75. M. Garzon, Cayley automata, Theoret. Comput. Sci 108 (1993), 83–102.

    Article  MathSciNet  MATH  Google Scholar 

  76. W.H Gates and C.H. Papadimitriou, Bounds for sorting by prefix reversal, Discrete Math. 27 (1979), 47–57.

    Article  MathSciNet  Google Scholar 

  77. G. Gauyacq, Edge-forwarding index of star graphs and other Cayley graphs, to appear in Discrete Appl. Math,Research report LABRI, Bordeaux.

    Google Scholar 

  78. G. Gauyacq, Routages uniformes dans les graphes sommet-transitifs, PhD thesis, LABRI, Bordeaux, 1995.

    Google Scholar 

  79. G. Gauyacq, On quasi-Cayley graphs, to appear in Discrete Appl. Math

    Google Scholar 

  80. A. Germa, M.-C. Heydemann, and D. Sotteau, Cycles in cube-connected cycles, to appear in Discrete Appl. Math. Technical Report 1074, L.R.I., Orsay, 1996.

    Google Scholar 

  81. C. D. Godsil, Connectivity of minimal Cayley graphs, Arch. Math 37 (1981), 473–476.

    Article  MathSciNet  MATH  Google Scholar 

  82. D. M. Gordon, Parallel sorting on Cayley graphs, Algorithmica 6 (1991), 554–564.

    Article  MathSciNet  MATH  Google Scholar 

  83. C. GowriSankaran, Broadcasting on recursively decomposable Cayley graphs, Discrete Appl. Math 53 (1994), 171–182.

    Article  MathSciNet  MATH  Google Scholar 

  84. Q.-P. Gu and S. Peng, Fault tolerant routing in hypercubes and star graphs, Parallel Process. Lett 6 (1996), 127–136.

    Article  Google Scholar 

  85. Y. O. Hamidoune, Sur quelques problèmes de connexité dans les graphes orientés, J. Combin. Theory Ser. B 30 (1981), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  86. Y. O. Hamidoune, A. S. Lladó, and O. Serra, Vosperian and superconnected Abelian Cayley digraphs, Graphs Combin. 7 (1991), 143–152.

    Article  MathSciNet  MATH  Google Scholar 

  87. Y. O. Hamidoune, A. S. Lladó, and O. Serra, The connectivity of hierarchical digraphs, Discrete Appl. Math 37–38 (1992), 275–280.

    Article  Google Scholar 

  88. Y. O. Hamidoune, A. S. Lladó, and O. Serra, Small cuts in quasiminimal Cayley graphs, Discrete Math. 159 (1996), 131–142.

    Article  MathSciNet  MATH  Google Scholar 

  89. Y. O. Hamidoune, A. S. Lladó, and O. Serra, An isoperimetric problem in Cayley graphs, preprint, 1997.

    Google Scholar 

  90. Y. O. Hamidoune, A. S. Lladó, and O. Serra, On isoperimetric connectivity in vertex-transitive graphs, preprint, 1997.

    Google Scholar 

  91. M. Heydari and H. Sudborough, On sorting by prefix reversals and the diameter of pancake networks, Lecture Notes in Comput. Sci. 678 (1993), 218–227.

    Google Scholar 

  92. M.-C. Heydemann, N. Marlin, and S. Perennes, Cayley graphs with rotations, preprint, L.R.I., Orsay, 1997.

    Google Scholar 

  93. M.-C. Heydemann, J.-C. Meyer, J. Opatrny, and D. Sotteau, Forwarding indices of consistent routings and their complexity, Networks 24 (1994), 75–82.

    Article  MathSciNet  Google Scholar 

  94. M.-C. Heydemann, J.-C. Meyer, and D. Sotteau, On forwarding indices of networks, Discrete Appl. Math 23 (1989), 103–123.

    Article  MathSciNet  MATH  Google Scholar 

  95. C.-T. Ho and M.-Y. Kao, Optimal broadcast in all-port wormhole-routed hypercubes, IEEE Trans. Parallel Distrib. Systems 6 (1995), 200–204.

    Article  Google Scholar 

  96. A. Hoffman and R.R. Singleton, On Moore graphs with diameters 2 and 3, IBM J. Res. Develop 4 (1960), 497–504.

    Article  MathSciNet  MATH  Google Scholar 

  97. D. F. Hsu, Introduction to a special issue on interconnection networks, Networks 23 (1993), 211–213.

    Article  Google Scholar 

  98. D. F. Hsu, On container width and length in graphs, groups and networks, IEICE Trans. Fundamentals E 77(A) (1994), 668–680.

    Google Scholar 

  99. M. Jerrum, The complexity of finding minimal-length generating sequence, Theoret. Comput. Sci. 36 (1985), 265–289.

    MathSciNet  MATH  Google Scholar 

  100. W. H. Kautz, Bounds on directed (d, k) graphs. Theory of cellular logic networks and machines, Final report, AFCRL-68–0668, 1968.

    Google Scholar 

  101. M. S. Krishnamoorthy and B. Krishnamurthy, Fault diameter of interconnection networks, Comput. Math. Appl 13 (1987), 577–1582.

    Article  MathSciNet  MATH  Google Scholar 

  102. P. Kulasinghe and S. Bettayeb, On the multiply-twisted hypercube, in: Parallel and Distributed Computing, Lecture Notes in Comput. Sci. 805, Springer-Verlag, Berlin, 1994, 267–278.

    Google Scholar 

  103. S. Lakshmivarahan, J. Jwo, and S. K. Dhall, Symmetry in interconnection networks based on Cayley graphs of permutation groups: a survey, Parallel Comput. (1993), 19 361–407.

    Article  MathSciNet  MATH  Google Scholar 

  104. S. Latifi, On the fault diameter of the star graph, Inform. Process. Lett 46 (1993), 143–150.

    Article  MathSciNet  MATH  Google Scholar 

  105. C. Lavault, Interconnection networks: graph and group-theoretic modelling, preprint 94–04, LIPN, Villetaneuse, France, 1994.

    Google Scholar 

  106. F. T. Leighton, Introduction to Parallel Algorithms and Architectures, M. Kaufmann, San Mateo, CA, 1991.

    Google Scholar 

  107. A. L. Liestman and D. Richards, Eds., Proc. Int. Workshop on Broadcasting and Gossiping, 1990; Discrete Applied Math. 53 (1994).

    Google Scholar 

  108. J. Liu, Hamiltonian decomposition of Cayley graphs on abelian groups of odd order, J. Combin. Theory Ser. B 66 (1996), 75–76.

    Article  MathSciNet  MATH  Google Scholar 

  109. A. Machi and F. Mignosi, Garden of Eden configurations for cellular automata on Cayley graphs of groups, SIAM J. Discrete Math 6 (1993), 44–56.

    Article  MathSciNet  MATH  Google Scholar 

  110. W. Mader, Minimale n-fach kantenzusammenhängende Graphen, Math. Ann 191 (1971), 21–28.

    Article  MathSciNet  MATH  Google Scholar 

  111. Y. Manoussakis and Z. Tuza, The forwarding index of directed networks, Discrete Appl. Math 68 (1996), 279–291.

    Article  MathSciNet  MATH  Google Scholar 

  112. N. Marlin, Rotations complètes dans les graphes de Cayley, DEA, Université de Nice Sophia-Antipolis, 1996.

    Google Scholar 

  113. E.F. Moore, Personal communication referred to in [96], 1958.

    Google Scholar 

  114. J. Morris, Connectivity of Cayley graphs: A special family, J. Combin. Math. Combin. Comput 20 (1996), 111–120.

    MathSciNet  MATH  Google Scholar 

  115. C. Padro and P. Morillo, Diameter vulnerability of iterated line digraphs, Discrete Math. 149 (1996), 189–204.

    Article  MathSciNet  MATH  Google Scholar 

  116. F. P. Preparata and J. Vuillemin, The cube-connected cycles: a versatile network for parallel computation, Comm. ACM 24 (1981), 300–309.

    Article  MathSciNet  Google Scholar 

  117. D. J. S. Robinson, A Course in the Theory of Groups, 2nd ed., Springer-Verlag, 1996.

    Google Scholar 

  118. Z. Róka, Automates cellulaires sur graphes de Cayley, PhD thesis, École Normale Supérieure de Lyon, Lyon, 1994.

    Google Scholar 

  119. Z. Róka, One-way cellular automata on Cayley graphs, Theoret. Comput. Sci 132 (1994), 259–290.

    Article  MathSciNet  MATH  Google Scholar 

  120. Y. Rouskov, S. Latifi, and P. K. Srimani, Conditional fault diameter of star graph networks, J. Parallel Distrib. Comput 33 (1996), 91–97.

    Article  Google Scholar 

  121. Y. Rouskov and P. K. Srimani, Fault diameter of star graphs, Inform. Process. Lett. 48 (1993), 243–251.

    Article  MathSciNet  Google Scholar 

  122. R. Saad, Complexity of the forwarding index problem, SIAM J. Discrete Math 6 (1993), 418–427.

    Article  MathSciNet  MATH  Google Scholar 

  123. Y. Saad and M. H. Schultz, Topological properties of hypercubes, IEEE Trans. Comput 37 (1988), 867–872.

    Article  Google Scholar 

  124. G. Sabidussi, On a class of fixed-point-free graphs, Proc. Amer. Math. Soc. 9 (1958), 800–804

    Google Scholar 

  125. G. Sabidussi, Graph multiplication, Math. Z 72 (1960), 446–457.

    Article  MathSciNet  MATH  Google Scholar 

  126. G. Sabidussi, The lexicographic product of graphs, Duke Math. J 28 (1961), 573–578.

    Article  MathSciNet  MATH  Google Scholar 

  127. G. Sabidussi, Vertex transitive graphs, Monatsh. Math 68 (1964), 426–438.

    Article  MathSciNet  MATH  Google Scholar 

  128. J.-F. Saclé, Diameter of some Cayley graphs, private communication, 1997.

    Google Scholar 

  129. M. Sampels, Algebraic constructions of efficient systolic architectures, in: Proc. 2nd Internat. Conf. Massively Parallel Computing Systems (MPCS ‘86), IEEE, 1996.

    Google Scholar 

  130. M. Sampels, Private communication, 1997.

    Google Scholar 

  131. M. Sampels and S. Schöf, Massively parallel architectures for parallel discrete event simulation, in: Proc. 8th European Simulation Symp. (ESS ‘86), vol. 2, SCS, 1996, 374–378.

    Google Scholar 

  132. S. Schibell and R. Stafford, Processor interconnection networks from Cayley graphs, Discrete Appl. Math 40 (1992), 333–357.

    Article  MathSciNet  MATH  Google Scholar 

  133. F. Shahrokhi, Approximation algorithms for the maximum concurrent flow problem, ORSA J. Comput 1 (1989), 62–69.

    Article  MATH  Google Scholar 

  134. F. Shahrokhi and D. Matula, The maximum concurrent flow problem, J. Assoc. Comput. Mach 37 (1990), 318–334.

    Article  MathSciNet  MATH  Google Scholar 

  135. F. Shahrokhi and L. Szekely, Formula for the optimal congestion of the uniform concurrent multicommodity flow, Research Report CRPDC-93–6, University of North Texas, 1993.

    Google Scholar 

  136. F. Shahrokhi and L. Szekely, Integral uniform concurrent flows and all pairs packet routing, Congr. Numer 97 (1993), 3–16.

    MathSciNet  MATH  Google Scholar 

  137. F. Shahrokhi and L. Szekely, On canonical concurrent flows, crossing numbers and graph expansion, Combin. Probab. Comput 3 (1994), 523–543.

    Article  MathSciNet  MATH  Google Scholar 

  138. P. Solé, The forwarding index of orbital regular graphs, Discrete Math. 130 (1994), 171–176.

    Article  MathSciNet  MATH  Google Scholar 

  139. P. Solé, Expanding and forwarding, Discrete Appl. Math 58 (1995), 67–78.

    Article  MathSciNet  MATH  Google Scholar 

  140. P. Strogova, Finding a finite group presentation using rewriting, in: Proc. Workshop on Symbolic Rewriting Techniques (M. Bronstein, ed.), 1995, 35–40.

    Google Scholar 

  141. P. Vadapelli and P. Srimani, Trivalent graphs for interconnection networks, Inform. Process. Lett 54 (1995), 329–335.

    Article  MathSciNet  Google Scholar 

  142. P. Vadapelli and P. Srimani, A new family of Cayley graph interconnection networks of constant degree four, IEEE Trans. Parallel Distrib. Systems 7 (1996), 26–32

    Google Scholar 

  143. P. Vadapelli and P. Srimani, Shortest routings in trivalent Cayley graphs networks, Inform. Process. Lett. 57 (1996), 183–188.

    Google Scholar 

  144. E. VanDoorn, Connectivities of circulant digraphs, J. Graph Theory 10 (1986), 9–14.

    Article  MathSciNet  Google Scholar 

  145. M. E. Watkins, Connectivity of transitive graphs, J. Combin. Theory 8 (1970), 23–29.

    Article  MathSciNet  MATH  Google Scholar 

  146. M. E. Watkins, On the action of non-abelian groups on graphs, J. Combin. Theory 11 (1971), 95–104.

    Article  MathSciNet  MATH  Google Scholar 

  147. A. White, Graphs, Groups and Surfaces,North-Holland, Amsterdam, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heydemann, MC. (1997). Cayley graphs and interconnection networks. In: Hahn, G., Sabidussi, G. (eds) Graph Symmetry. NATO ASI Series, vol 497. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8937-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8937-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4885-1

  • Online ISBN: 978-94-015-8937-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics