Skip to main content

ACFA and the Manin-Mumford Conjecture

  • Chapter
Algebraic Model Theory

Part of the book series: NATO ASI Series ((ASIC,volume 496))

Abstract

We give Hrushovski’s proof of the (extended) Manin-Mumford conjecture over number fields. Recall that the Manin-Mumford conjecture states that if X is a nonsingular projective curve of genus > 1 over an algebraically closed field of characteristic 0, and A is the Jacobian variety of X then X ∩ Tor (A) is finite (where Tor (A) denotes the group of torsion points of A). This is of course a special case of the Mordell-Lang conjecture. Raynaud [8] proved that if A is an abelian variety (in characteristic 0) and X is a subvariety of A then X ∩ Tor(A) is a finite union of cosets (proving in particular Manin-Mumford). Hindry [3] proved the same thing, but with A an arbitrary commutative algebraic group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Chatzidakis, Groups definable in ACFA, this volume.

    Google Scholar 

  2. Z. Chatzidakis and E. Hrushovski, Model Theory of difference flelds, preprint 1996.

    Google Scholar 

  3. M. Hindry, Points de torsion sur les sousvariétés des variétés abeliennes, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), 311–314.

    MathSciNet  MATH  Google Scholar 

  4. E. Hrushovski, The Manin-Mumford conjecture and the model theory of difference fields, preprint 1996.

    Google Scholar 

  5. E. Hrushovski and A. Pillay, Weakly normal groups, Logic Colloquium ’85, North Holland, Amsterdam, 1987, pp. 233–244.

    Google Scholar 

  6. B. Kim and A. Pillay, Simple theories, to appear in the Annals of Pure and Applied Logic.

    Google Scholar 

  7. Y. Kawamata, On Bloch’s conjecture, Invent. Math., 57 (1980), 97–100.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Raynaud, Around the Mordell conjecture for function fields and a conjecture of Serge Lang, Algebraic Geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., 1016, Springer, Berlin-New York, 1983, pp. 1–19.

    Google Scholar 

  9. J.H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York-Berlin, 1986.

    Book  MATH  Google Scholar 

  10. A. Weil, Variétés abéliennes et courbes algébriques, Hermann, Paris, 1948.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pillay, A. (1997). ACFA and the Manin-Mumford Conjecture. In: Hart, B.T., Lachlan, A.H., Valeriote, M.A. (eds) Algebraic Model Theory. NATO ASI Series, vol 496. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8923-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8923-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4884-4

  • Online ISBN: 978-94-015-8923-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics