Skip to main content

Co-Adsorption on Metal-Oxide Crystal Surfaces

Cases of CO/Cu/ZnO(0001) and CO2/Na/TiO2(110)

  • Chapter
Chemisorption and Reactivity on Supported Clusters and Thin Films

Part of the book series: NATO ASI Series ((NSSE,volume 331))

  • 992 Accesses

Abstract

Coadsorption on metal-oxide crystal surfaces is discussed for two model catalyst examples in which a (CO 2 ) complex is involved: 1) Adsorption of CO onto Cu clusters and thin films supported by a thermally etched (0001) surface of a ZnO single crystal and 2) Adsorption of CO2 onto Na clusters and thin films supported by 1×1- and 1×2- terminated (110) surfaces of a TiO2 single crystal.

In the former case we will apply electron spectroscopy results from adsorption of CO on clean and Cu-deposited Zn0(0001) surfaces to discuss evidence for formation of a (CO 2 ) chemisorption complex and for Cu oxidation during CO exposure.

In the latter case we will apply synchrotron-radiation-induced core-level-, valenceband and resonant photoemission results from adsorption of CO2 on a 1×1 truncated and on a 1×2 reconstructed TiO2(110) surface to discuss the difference in Na adsorption behavior of the two surfaces (adsorption onto two different sites) and the strong reactivity towards CO2 when submonolayer quantities of Na are preadsorbed.Valence-band data shows formation of carbonate. At low coverage the presence of a (CO 2 ) complex suggests a 2CO 2 →CO 3 + CO reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klier, K. (1982), Adv. Catal. 31, 243.

    Article  CAS  Google Scholar 

  2. Tanabe, K. (1984) in B. Imelike, C. Naccache, G. Coudurier, Y.B. Taarit and J.C. Vedrine (eds.), Catalysis by Acids and Bases, Elsevier Publishers, Amsterdam.

    Google Scholar 

  3. Anderson, J.R. and Boudant, M. eds. (1982) Catalysis: Science and Technology, Springer, Berlin.

    Google Scholar 

  4. Göpel, W., Hesse, J. and Zeinel, J.N.,eds. (1991) Sensors - A Comprehensive Survey vol. 2, VCH,Weinheim.

    Google Scholar 

  5. a) Chinchen, G.C., Spencer, M.S., Waugh, K.C. and Whan, D.A. (1987), J. Chem. Soc. Farad. Trans. 183, 2193–2212.

    Google Scholar 

  6. Rasmussen, P.B., Holmblad, P.M., Askgârd, C.V., Ovesen, C.V., Stolze, P., Norskov, J.K. and Chorkendorff, I. (1994), Cataf. Lett. 26, 373.

    Article  CAS  Google Scholar 

  7. Nakamura, J., Uchijima, T., Kanai, Y., and Fujitani, T. (1996), The role of ZnO in Cu/ZnO methanol synthesis catalysts, Catal. Today 28, 223–30.

    Article  CAS  Google Scholar 

  8. Moller, P.J. and Nerlov, J. (1994) Ultrathin films of Cu on ZnO(11–20): growth and electronic structure, Surf. Sci. 307–309, 591–596.

    Article  Google Scholar 

  9. Henrich, V.E. and Cox, P.A. (1994) The Surface Science ofMetal Oxides, Cambridge University Press, Cambridge.

    Google Scholar 

  10. a) Moller, P.J. (1994), Copper and nickel ultrathin films on ceramic oxide crystal surfaces, in J. Nowotny (ed.) Science of Ceramic Interfaces,vol II, Elsevier Publishers, Amsterdam, pp. 473–526.

    Google Scholar 

  11. Moller, P.J., Komolov, S.A. and Lazneva, E.F. (1993) Structural and electronic properties of ultrathin Cu-layers on some crystalline metal-oxides, in H.-J. Freund and E. Umbach (eds), Adsorption on Ordered Surfaces of Ionic Solids and Thin Films, Springer-Verlag, Berlin, pp. 156–166.

    Chapter  Google Scholar 

  12. Chang, S.C. and Mark, P. (1974), The chrystallography of the polar (0001)Zn and (000–1)0 surfaces of zinc oxide, Surf. Sci. 46, 293–300.

    Article  CAS  Google Scholar 

  13. Moller, P.J., Komolov, S.A. and Lazneva, E.F. (1994) VLEED from a ZnO(0001) substructure, Surf. Sci. 307–309, 1177–1181.

    Article  Google Scholar 

  14. Bloom, S. and Ortenburger, I. (1973), Phys. Status Solidi (b) 58, 561.

    Article  CAS  Google Scholar 

  15. Jaklevic, R.C. and Davis, L.C. (1982), Band signatures in the low-energy-electron reflectance spectra of fcc metals, Phys. Rev. B 26, 5391.

    Article  CAS  Google Scholar 

  16. Herlt, H.-J., Feder, R., Meister, G. and Bauer, E.G. (1981), Experiment and theory of the elastic electron reflection coefficient from tungsten, Solid State Commun. 38, 973–76.

    Article  CAS  Google Scholar 

  17. Komolov, S.A. (1992) Total Current Spectroscopy ofSurfaces, Gordon and Breach, Philadelphia.

    Google Scholar 

  18. Komolov, S.A. and Strocov, V.N. (1991), Phys. Status Solidi (b),167, 605.

    Google Scholar 

  19. Schafer, I., Schlüter, M. and Skibowski, M. (1987), Conduction-band structure of graphite studied by angle-resolved inverse photoemission and target current spectroscopy, Phys. Rev.B 35, 7663.

    Article  Google Scholar 

  20. Jacobi, K., Zwicker, G. And Gutmann, A. (1984), Surf. Sci. 141, 109.

    Article  CAS  Google Scholar 

  21. Jacobi, K. (1984), Clean ZnO surfaces and their interaction with gases, in H.-J. Freund and E. Umbach (eds.) Adsorption on Ordered Surfaces of Ionic Solids and Thin Films, Springer Verlag, Berlin, p. 103–114.

    Google Scholar 

  22. Moller, P.J., Komolov, S.A. Lazneva, E.F. and Pedersen, E.H. (1995) CO2 intermediates in the CO/ZnO(0001) interface, Surf. Sci. 323, 102–108.

    Google Scholar 

  23. Au, C.T., Hirsch, W. and Hirschwald, W. (1988), Adsorption of CO and CO2 on annealed and defect zinc oxide (000–1) surface studied by photoelectron spectroscopy (XPS and UPS), Surf Sci. 197, 391–401.

    Article  CAS  Google Scholar 

  24. Göpel, W., Bauer, R.S. and Hanson, G. (1980), Ultraviolet photoemission studies of chemisorption and point defect formation on ZnO nonpolar surfaces, Surf. Sci. 99, 138–158.

    Article  Google Scholar 

  25. Moller, P.J., Komolov, S.A. and Lazneva, E.F. (1994) Influence of atomic Cu-layer epitaxy on CO2 and CO photoinduced from ZnO(0001), Appl. Surf. Sci. 82/83, 569–575.

    Google Scholar 

  26. Shapira, Y., Cox, S.M. and Lichtman, D. (1976), Chemisorption, photodesorption and conductivity measurements on ZnO surfaces, Surf. Sci. 54, 43–59.

    Article  CAS  Google Scholar 

  27. Moller, P.J., Komolov, S.A. and Lazneva, E.F. (1993), Laser-induced CO2 desorption from a CO/Cu/ ZnO(0001) surface, Surf. Sci. Lett. 290, L677.

    Article  CAS  Google Scholar 

  28. Cheng, W.H. and Kung, H.H. (1982), Interaction of CO, CO2 and 02 with nonpolar, stepped and polar surfaces, Surf. Sci. 122, 21–39.

    Article  CAS  Google Scholar 

  29. Ge, Q. and Moller, P.J. (1994) CO adsorption on clean and atomic-layer-Cu-covered ZnO(10–10) surfaces, Appl. Surf. Sci. 82/83, 305.

    Google Scholar 

  30. Fu, S.S. and Somorjai, G.A. (1991), Zinc oxide and overlayers on Cu(110): a model for Cu-Zn-O catalysts, Appl. Surf Sci. 48/49, 93–103.

    Google Scholar 

  31. Nygren, M.A. and Siegbahn, P.E.M. (1992), Theoretical study of chemisorption of CO on copper clusters, J. Phys. Chem. 96, 75–79.

    Article  Google Scholar 

  32. Onishi, H., Aruga, T. Egawa, C. and Iwasawa, Y. (1988), Modification of surface-electronic structure on TiO2(110) and TiO2(441) by Na deposition, Surf Sci. 199, 54–66.

    Article  CAS  Google Scholar 

  33. Onishi, H., Aruga, T., Egawa, C. and Iwasawa, Y. (1989), Active structures and electronic states for adsorption of CO2 and NO on Na/TiO2(110) surface, J.Chem. Soc. Far. Trans. 85, 2597–2604.

    Article  CAS  Google Scholar 

  34. Praphakaran, K., Purdie, D., Casanowa, R. Muryn, C.A., Hardman, P.J., Willcott, P.L. and Thornton, G. (1992), Alkali-metal-to-substrate charge transfer in TiO2(110)c(2x2)K, Phys. Rev. B. 45, 6969.

    Article  Google Scholar 

  35. Murray, P.W., Condon, N.G. and Thornton, G. (1995), Na adsorption sites on TiO2(110)-1x2 and its 2x2 superlattice, Surf. Sci. Lett. 323, L281–L286.

    Article  CAS  Google Scholar 

  36. Thomas, A.G., Hardman, P.J., Muryn, C.A., Dhariwal, H.S., Prime, AF.,Thomton, G., Roman, E. and de Segovia, J.L. (1995), J. Chem. Soc. Far. Trans. 91, 3569.

    Article  CAS  Google Scholar 

  37. Heise, R. and Courth, R. (1995), Surf. Sci. 331–335, 1460.

    Google Scholar 

  38. Moller, P.J. and Wu, M.-C. (1989) Surface geometrical structure and incommensurate growth: ultrathin Cu films on TiO2(110), Surf. Sci. 224, 265–276.

    Article  Google Scholar 

  39. Murray, P.W., Condon, N.G. and Thornton, G. (1995), Effect of stoichiometry on the structure of TiO2(110), Phys. Rev.B 51, 10989.

    Article  CAS  Google Scholar 

  40. Sander, M. and Engel, T. (1994), Atomic level structure of TiO2(110) as a function of surface oxygen coverage, Surf. Sci. Lett. 302, L263–L268.

    Article  CAS  Google Scholar 

  41. Onishi, H. and Iwasawa, Y. (1994), Reconstruction of TiO2(110) surface: STM study with atomic-scale resolution, Surf. Sci. Lett. 313, L783–L789.

    Article  CAS  Google Scholar 

  42. Szabo, A and Engel, T. (1995), Structural studies of TiO2(110) using STM, Surf Sc,. 329, 241–254.

    Article  CAS  Google Scholar 

  43. Nerlov, J., Ge, Q. and Moller, P.J. (1996) Resonant photoemission from TiO2(110) surfaces: implications on surface bonding and hybridization, Surf. Sci. 348, 28.

    Article  CAS  Google Scholar 

  44. a) Bertel, E., Stockbauer, R. and Madey, T.E. (1983), Resonant electron emission in Ti and TiO2,Phys. Rev.B 27, 1939–42.

    Article  CAS  Google Scholar 

  45. b) Davis, L.C. (1986), Photoemission from transition metals and their compounds, J. Appl. Phys. 59, R25–63.

    Article  CAS  Google Scholar 

  46. c) Zhang, Z., Jeng, S.-P. and Henrich, V.E. (1991), Cation-ligand hybridization for stoichiometric and reduced TiO2(110) surfaces determined by resonant photoemission, Phys. Rev. B 43, 12004.

    Google Scholar 

  47. Nerlov, J., Christensen, S.V., Weichel, S., Pedersen, E.H. and Moller, P.J. (1996) A photoemission study of the adsorption of CO2 and Na on TiO2(110)-1x1 and -1x2 surfaces: adsorption geometry and reactivity, Surf Sci,in press.

    Google Scholar 

  48. Vogtenhuber, D., Podloucky, R. Neckel, A, Steinemann, S.G. and Freeman, A.J. (1994), Electronic structure and relaxed geometry of the TiO2(110) rutile surface, Phys. Rev. B 49, 2099.

    CAS  Google Scholar 

  49. Ramamoorthy, M., King-Smith, R.D. and Vanderbilt, D. (1994), Defects on TiO2(110) surfaces, Phys. Rev. B 49, 7709.

    Article  CAS  Google Scholar 

  50. Reinhardt, P. and Heß, B.A. (1994), Electronic and geometrical structure of rutile surfaces, Phys. Rev. B 50, 1 2015.

    Google Scholar 

  51. Sorantin, P.I. and Schwarz, K. (1992), Chemical bonding in rutile-type compounds, Inorg. Chem. 31, 567–76.

    Article  CAS  Google Scholar 

  52. Au, C.T., Hirsch, W. and Hirschwald, W. (1988), Adsorption and interaction of carbon dioxide, formic acid and hydrogen/carbon dioxide mixtures on (10–10) zinc oxide surfaces studied by XPS and UPS, Surf. Sci. 199, 507–517.

    Article  CAS  Google Scholar 

  53. Conner, J.A., Considine, M. and Hillier, I.H. (1978), Low energy photoelectron spectroscopy of solids: photoelectron spectra of carbonate, phosphate, sulphate, triborate and ethanoate ions, J. Chem. Soc. Far. Trans. II 74, 1285–1291.

    Article  Google Scholar 

  54. Freund, H.-J. and Messmer, R.P. (1986), On the bonding and reactivity of CO2 on metal surfaces, Surf. Sci. 172, 1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Møller, P.J. (1997). Co-Adsorption on Metal-Oxide Crystal Surfaces. In: Lambert, R.M., Pacchioni, G. (eds) Chemisorption and Reactivity on Supported Clusters and Thin Films. NATO ASI Series, vol 331. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8911-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8911-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4807-3

  • Online ISBN: 978-94-015-8911-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics