Skip to main content

Development of the Suspensor: Differentiation, Communication, and Programmed Cell Death During Plant Embryogenesis

  • Chapter
Cellular and Molecular Biology of Plant Seed Development

Abstract

The suspensor functions early in embryogenesis to provide physical support, nutrition, and growth regulators to the developing embryo proper. In most plants, the suspensor is derived from the basal cell produced following asymmetric division of the zygote. Cellular differences between the suspensor and embryo proper may result from morphogenetic gradients established prior to division of the zygote. The suspensor develops rapidly with respect to the embryo proper and becomes the first differentiated embryonic structure produced during seed development. The suspensor later undergoes programmed cell death and is not present in mature seeds. Several abnormal suspensor mutants of Arabidopsis have been identified in which the suspensor fails to undergo programmed cell death and instead proliferates to form a structure with features characteristic of the embryo proper. Analysis of these mutants suggests that communication with the embryo proper is required early in embryogenesis for maintenance of suspensor cell identity and later in suspensor development for initiation of programmed cell death. The pattern of embryogenic transformation observed in these mutants indicates that suspensor cells have the potential to recapitulate the entire spectrum of developmental programs normally restricted to the embryo proper. During normal development, interactions with the embryo proper appear to inhibit embryogenic programs, allowing suspensor cell identity to be maintained. Based on these observations, we propose that negative regulation of developmental potential plays a major role in suspensor cell differentiation and that the suspensor may serve as a valuable system for addressing mechanisms of cell differentiation and cellular communication during plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeschbacher, R.A., Schiefelbein, J.W., and Benfey, P.N. (1994) The genetic and molecular basis of root development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 25–45.

    Article  CAS  Google Scholar 

  • Akhundova, G.G., Grinikh, L.I., and Shevchenko, V.V. (1978) Development of Arabidopsis thaliana embryos after gamma irradiation of plants in the generative phase. Ontogenez. 9: 514–519.

    PubMed  CAS  Google Scholar 

  • Alpi, A., Tognoni, F., and D’Amato, F. (1975) Growth regulator levels in embryo and suspensor of Phaseolus coccineus at two stages of development. Planta 127: 153–162.

    Article  CAS  Google Scholar 

  • Barton, M.K., and Poethig, R.S. (1993) Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119: 823–831.

    Google Scholar 

  • Benfey, P.N., Linstead, P.J., Roberts, K., Schiefelbein, J.W., Hauser, M.-T., and Aeschbacher, R.A. (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119: 57–70.

    PubMed  CAS  Google Scholar 

  • Bennici, A., and Cionini, P.G. (1979) Cytokinins and in vitro development of Phaseolus coccineus embryos. Planta 147: 27–29.

    Article  CAS  Google Scholar 

  • Berleth, T., and Jürgens, G. (1993) The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118: 575–587.

    Google Scholar 

  • Bhalla, P.L., Singh, M.B., and Malik, C.R (1981) Studies on the comparative biosynthetic activities of embryo and suspensor in Tropaeolum majus L. Z. Pflanzenphysiol. 103: 115–119.

    CAS  Google Scholar 

  • Brady, T., and Combs, S.H. (1988) The suspensor is a major route of nutrients into proembryo, globular and heart stage Phaseolus vulgaris embryos. In: Cresti, M., Gorie, P., and Pacini, E. (eds), Sexual Reproduction in Higher Plants, pp. 531–536. Springer-Verlag, Berlin.

    Google Scholar 

  • Brown, J.D., and Beggs, J.D. (1992) Roles of PRP8 protein in the assembly of splicing complexes. EMBO J. 11: 3721–3729.

    PubMed  CAS  Google Scholar 

  • Ceccarelli, N., Lorenzi, R., and Alpi, A. (1981) Gibberellin biosynthesis in Phaseolus coccineus suspensor. Z. Pflanzenphysiol. 102: 37–44.

    CAS  Google Scholar 

  • Cionini, P.G., Bennici, A., Alpi, A., and D’Amato, F. (1976) Suspensor, gibberellin and in vitro development of Phaseolus coccineus embryos. Planta 131.115–117.

    Article  CAS  Google Scholar 

  • Clark, J.K., and Sheridan, W.F. (1991) Isolation and characterization of 51 embryo-specific mutations of maize. Plant Cell 3: 935–951.

    PubMed  Google Scholar 

  • Clutter, M., Brady, T., Walbot, V., and Sussex, I. (1974) Macromolecular synthesis during plant embryogeny: Cellular rates of RNA synthesis in diploid and polytene cells in bean embryos. J. Cell Biol. 63: 1097–1102.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, T.J., and Cohen, J.D. (1993) The role of auxin in plant embryogenesis. Plant Cell 5: 1494–1495.

    PubMed  CAS  Google Scholar 

  • Cory, S. (1994) Fascinating death factor. Nature 367: 317–318.

    Article  PubMed  CAS  Google Scholar 

  • DeLong, A., Calderon-Urrea, A., and Dellaporta, S.L. (1993) Sex determination gene TAS-SELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74: 757–768.

    Article  PubMed  CAS  Google Scholar 

  • Devreux, M. (1963) Effets de l’irradiation gamma chronique sur l’embryogenese de Capsella bursa-pastoris Moench. In: VI Cong. Nucl. (Roma), Energ. Nucl. Argic, CNEN Vallecchi, pp. 198–217.

    Google Scholar 

  • Devreux, M., and Scarascia Mugnozza, G.T. (1962) Action des rayons gamma sur les premiers stades de developpement de l’embryon de Nicotiana rustica L. Caryologia 15: 279–291.

    Google Scholar 

  • Ellis, R.E., Yuan, J., and Horvitz, H.R. (1991) Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7: 663–698.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, R.B., de Paiva, G., and Yadegari, R. (1994) Plant embryogenesis: Zygote to seed. Science 266: 605–614.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J.T., and Ausubel, F.M. (1993) Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J. 4: 327–341.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J.T., Guo, A., Klessig, D.F., and Ausubel, F.M. (1994) Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77: 551–563.

    Article  PubMed  CAS  Google Scholar 

  • Haccius, B. (1963) Restitution in acidity-damaged plant embryos — regeneration or regulation? Phytomorphology 13: 107–115.

    CAS  Google Scholar 

  • Haccius, B., and Reichert, H. (1964) Restitutionserscheinungen an pflanzlichen meristemen nach Röntgenbestrahlung. II. Adventiv-embryonie nach samenbestrahlung von Eranthis hiemalis. Planta 62: 355–372.

    Article  Google Scholar 

  • Jürgens, G. (1994) Pattern formation in the embryo. In: Meyerowitz, E.M., and Somerville, C.R. (eds) Arabidopsis, pp. 297–312. Cold Spring Harbor Laboratory Press, Plainview, New York.

    Google Scholar 

  • Jürgens, G., Mayer, U., Torres Ruiz, R.A., Berleth, T., and Miséra, S. (1991) Genetic analysis of pattern formation in the Arabidopsis embryo. Development Suppl. 1: 27–38.

    Google Scholar 

  • Koncz, C., Chua, N.-H., and Schell, J. (1992) Methods in Arabidopsis Research. World Scientific Publishing Co., Singapore.

    Google Scholar 

  • Lersten, N.R. (1983) Suspensors in Leguminosae. Bot. Rev. 49: 233–257.

    Article  Google Scholar 

  • Lorenzi, R., Bennici, A., Cionini, P.G., Alpi, A., and D’Amato, F. (1978) Embryo-suspensor relations in Phaseolus coccineus: cytokinins during seed development. Planta 143: 59–62.

    Article  CAS  Google Scholar 

  • Maheshwari, P. (1950) An Introduction to the Embryology of Angiosperms. McGraw-Hill, New York.

    Google Scholar 

  • Mansfield, S.G., and Briarty, L.G. (1991) Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can. J. Bot. 69: 461–476.

    Article  Google Scholar 

  • Mansfield, S.G., Briarty, L.G., and Erni, S. (1991) Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can. J. Bot. 69: 447–460.

    Article  Google Scholar 

  • Mayer, U., Berleth, T., Torres Ruiz, R.A., Miséra, S., and Jürgens, G. (1993a) Pattern formation during Arabidopsis embryo development. In: Amasino, R.M. (ed) Cellular Communication in Plants, pp. 93–98. Plenum Press, New York.

    Google Scholar 

  • Mayer, U., Büttner, G., and Jürgens, G. (1993b) Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117: 149–162.

    Google Scholar 

  • Meinke, D.W. (1995) Molecular genetics of plant embryogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 369–394.

    Article  CAS  Google Scholar 

  • Meyerowitz, E.M., and Somerville, C.R. (1994) Arabidopsis. Cold Spring Harbor Laboratory Press, Plainview, New York.

    Google Scholar 

  • Nagl, W. (1990) Translocation of putrescine in the ovule, suspensor and embryo of Phaseolus coccineus. J. Plant Physiol. 136: 587–591.

    Article  CAS  Google Scholar 

  • Natesh, S., and Rau, M.A. (1984) The embryo. In: Johri, B.M. (ed) Embryology of Angiosperms, pp. 377–443. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Picciarelli, P., Alpi, A., Piselli, L., and Scalet, M. (1984) Gibberellin-like activity in suspensors of Tropaeolum majus L. and Cytisus laburnum L. Planta 162: 566–568.

    Article  CAS  Google Scholar 

  • Pritchard, H.N. (1964) A cytochemical study of embryo development in Stellaria media. Amer. J. Bot. 51:472–479.

    Article  CAS  Google Scholar 

  • Przybyllok, T., and Nagl, W. (1977) Auxin concentration in the embryo and suspensors of Tropaeolum majus, as determined by mass fragmentation (single ion detection). Z. Pflanzenphysiol. 84: 463–465.

    CAS  Google Scholar 

  • Raghavan, V. (1986) Embryogenesis in Angiosperms. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Schiefelbein, J.W., and Benfey, P.N. (1994) Root development in Arabidopsis. In: Meyerowitz, E.M., and Somerville, C.R. (eds) Arabidopsis, pp. 335–353. Cold Spring Harbor Laboratory Press, Plainview, New York.

    Google Scholar 

  • Schulz, P., and Jensen, W.A. (1969) Capsella embryogenesis: the suspensor and the basal cell. Protoplasma 67: 139–163.

    Article  Google Scholar 

  • Schwartz, B.W., Yeung, E.C., and Meinke, D.W. (1994) Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis. Development 120: 3235–3245.

    CAS  Google Scholar 

  • Schwartz, L.M., Smith, S.W., Jones, M.E.E., and Osborne, B.A. (1993) Do all programmed cell deaths occur via apoptosis? Proc. Natl. Acad. Sci. USA 90: 980–984.

    Article  PubMed  CAS  Google Scholar 

  • Sussex, I., Clutter, M., Walbot, V., and Brady, T. (1973) Biosynthetic activity of the suspensor of Phaseolus coccineus. Caryologia 25 (suppl.): 262–272.

    Google Scholar 

  • Topping, J.F., Agyeman, F., Henricot, B., and Lindsey, K. (1994) Identification of molecular markers of embryogenesis in Arabidopsis thaliana by promoter trapping. Plant J. 5: 895–903.

    Article  PubMed  CAS  Google Scholar 

  • Vaux, D.L., Haecker, G., and Strasser, A. (1994) An evolutionary perspective on apoptosis. Cell 76: 777–779.

    Article  PubMed  CAS  Google Scholar 

  • Vernon, D.M., and Meinke, D.W. (1994) Embryogenic transformation of the suspensor in twin, a polyembryonic mutant of Arabidopsis. Devel. Biol. 165: 566–573.

    Article  CAS  Google Scholar 

  • Vernon, D.M., and Meinke, D.W. (1995) Late embryo-defective mutants of Arabidopsis. Dev. Genet. 16:311–320.

    Article  Google Scholar 

  • Walbot, V, Brady, T., Clutter, M., and Sussex, I. (1972) Macromolecular synthesis during plant embryogeny: rates of RNA synthesis in Phaseolus coccineus embryos and suspensors. Devel. Biol. 29: 104–111.

    Article  CAS  Google Scholar 

  • Wardlaw, C.W. (1955) Embryogenesis in Plants. Methuen & Co., LTD, London.

    Google Scholar 

  • West, M.A.L., and Harada, J.J. (1993) Embryogenesis in higher plants: an overview. Plant Cell 5: 1361–1369.

    PubMed  Google Scholar 

  • Wyllie, A.H., Kerr, J.F.R., and Currie, A.R. (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol. 68:251–306.

    Article  PubMed  CAS  Google Scholar 

  • Yadegari, R., de Paiva, G.R., Laux, T., Koltunow, A.M., Apuya, N., Zimmerman, J.L., Fischer, R.L., Harada, J.J., and Goldberg, R.B. (1994) Cell differentiation and morphogenesis are uncoupled in Arabidopsis raspberry embryos. Plant Cell 6: 1713–1729.

    PubMed  CAS  Google Scholar 

  • Yeung, E.C. (1980) Embryogeny of Phaseolus: The role of the suspensor. Z. Pflanzenphysiol. 96: 17–28.

    Google Scholar 

  • Yeung, E.C., and Meinke, D.W. (1993) Embryogenesis in angiosperms: development of the suspensor. Plant Cell 5: 1371–1381.

    PubMed  Google Scholar 

  • Yeung, E.C., and Sussex, I.M. (1979) Embryogeny of Phaseolus coccineus: The suspensor and the growth of the embryo-proper in vitro. Z. Pflanzenphysiol. 91: 423–433.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schwartz, B.W., Vernon, D.M., Meinke, D.W. (1997). Development of the Suspensor: Differentiation, Communication, and Programmed Cell Death During Plant Embryogenesis. In: Larkins, B.A., Vasil, I.K. (eds) Cellular and Molecular Biology of Plant Seed Development. Advances in Cellular and Molecular Biology of Plants, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8909-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8909-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4878-3

  • Online ISBN: 978-94-015-8909-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics