Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 345))

  • 2230 Accesses

Abstract

Several topics of current interest in quantum optics, such as electron optics vs photon optics, squeezed states of light, cavity quantum electrodynamics, and quantum nondemolition measurements are reviewed.

Electron optics and photon opitics are essentially identical in single particle interference effects. However, when two entangled particles are involved in the interferometry, the fermionic character of electrons and bosonic character of photons produce remarkably different results. The suppression of partition noise due to dissipation in fermionic (electron) systems is in sharp contrast to the enhancement of partition noise due to dissipation in bosonic (photon) systems.

Electromagnetic waves, with the noise on one quadrature amplitude reduced to below the quantum noise of a coherent state and the noise on the other quadrature amplitude enhanced to above it, are called squeezed states of light. Such nonclassical states of light have been studied extensively for the last decade because of their potential applications to various precision measurements. Generation of number-phase squeezed states by constant current driven semiconductor lasers is emphasized in this article. The extension of this technique to mesoscopic systems for regulated single photon generation is also described.

Spontaneous emission of an atom is either enhanced or suppressed by modifying a vacuum field fluctuation by a cavity wall. In a high-Q cavity, spontaneous emission is made even a reversible process. Such a technique of manipulating spontaneous emission is called cavity quantum electrodynamics. A new class of optical microcavity is making possible the exploration of cavity quantum electrodynamic phenomena in condensed matter systems. Control of spontaneous emission in a semiconductor quantum well microcavity and its application to a low-threshold microlaser are emphasized in this article.

Quantum nondemolition measurements are the repeated measurements of an observable without changing the free evolution of the observable. The measurement back action is confined to the conjugate observable of the measured observable and the Heisenberg uncertainty principle is still satisfied. This new measurement scheme can improve the measurement sensitivity of a quantum object and has recently been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caves, C. M. (1980) Phys. Rev. Lett. 45, 75.

    Article  ADS  Google Scholar 

  2. Yurke, B. (1986) Phys. Rev. Lett. 56, 1515.

    Article  ADS  Google Scholar 

  3. Loudon, R. (1989) in J. H. Eberly, L. Mandel, E. Wolf (eds.), Coherence and Quantum Optics VI, Plenum Press, New York, 703.

    Google Scholar 

  4. Hong, C. K., Ou, Z. Y., Mandel, L. (1987) Phys. Rev. Lett. 59, 2044.

    Article  ADS  Google Scholar 

  5. Meyster, P., Sargent, M. (1991), Elements of Quantum Optics (Springer-Verlag, Berlin, Heidelberg).

    Book  Google Scholar 

  6. Walls, D.F., Milburn, G.J.(1994), Quantum Optics (Springer-Verlag, Berlin, Heidelberg).

    MATH  Google Scholar 

  7. Vogel, W., Welsch, D. G. (1994) Lectures on Quantum Optics (Akademie Verlag).

    Google Scholar 

  8. Berman, P. R. (1994), Quantum electrodynamics (Academic Press, Boston).

    Google Scholar 

  9. V.B. Braginsky, F. Y. Khalili Quantum Measurements (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  10. Callen, H. B., Welton, T. A. (1951) Phys. Rev. 83, 34.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Landauer, R. (1989) Physica D 38, 226.

    Article  ADS  Google Scholar 

  12. Liu, R., Yamamoto, Y. (1994) Phys. Rev. B 50, 17411.

    Article  ADS  Google Scholar 

  13. Reznikov, M. et al. (1995) Phys. Rev. Lett. 75, 3340.

    Article  ADS  Google Scholar 

  14. Imamōglu, A., Yamamoto, Y. (1994) Phys. Lett. A 191, 425

    Article  ADS  Google Scholar 

  15. Imamōglu, A., Yamamoto, Y., Solomon, P. (1992) Phys. Rev. B 46, 9555;

    Article  ADS  Google Scholar 

  16. Imamōglu, A., Yamamoto, Y. (1992) Phys. Rev. B 46, 15982.

    Article  ADS  Google Scholar 

  17. Imamōglu, A., Yamamoto, Y. (1994) Phys. Rev. Lett. 72, 210.

    Article  ADS  Google Scholar 

  18. Haken, H. (1970), Light and Matter, vol. 25 of Handbuck der Physik (Springer-Verlag, Berlin).

    Google Scholar 

  19. Sargent, M. III, Scully, M.O., Lamb, W. E., Jr. (1974), Laser Physics (AddisonWesley, Reading, MA)

    Google Scholar 

  20. Louisell, W. H. (1973), Quantum Statistical Properties of Radiation (Wiley, New York).

    Google Scholar 

  21. Glauber, R. J. (1963) Phys. Rev. 131 2766–2785

    Article  MathSciNet  ADS  Google Scholar 

  22. Yamamoto, Y., Machida, S., Nilsson, O. (1991), in: Yamamoto, Y., (Ed.), Coherence, Amplification and Quantum Effects in Semiconductor Lasers (Wiley: New York) 461–537.

    Google Scholar 

  23. Golubev, Y. M., Sokolov, I. V. (1984), Sov. Phys. JETP 60, 234–245.

    Google Scholar 

  24. Purcell, E. M. (1946), Phys. Rev. 69, 681–682.

    Article  Google Scholar 

  25. Casimir, H., Polder, D. (1948), Phys. Rev. 73, 360–374.

    Article  ADS  MATH  Google Scholar 

  26. Jaynes, E. T., Cummings, F. W. (1963), Proc. IEEE 51, 89–95.

    Article  Google Scholar 

  27. Drexhage, K. H. (1974), in: Wolf, E., (Ed.), Progress in Optics, vol. 12, (North Holland: New York) 165–184.

    Google Scholar 

  28. Dicke, R.H. (1954), Phys. Rev., 93, 99–121.

    Article  ADS  MATH  Google Scholar 

  29. Hulet, R. G., Hilfer, E. S., Kleppner, D. (1985) Phys. Rev. Lett. 55, 2137–2140

    Article  ADS  Google Scholar 

  30. Jhe, W., Anderson, A., Hinds, E.A., Meschede, D., Moi, L., Haroche, S. (1987) Phys. Rev. Lett. 58 666–669.

    Article  ADS  Google Scholar 

  31. Gabrielse, G., Dehmelt, H. (1985) Phys. Rev. Lett. 55, 67–70.

    Article  ADS  Google Scholar 

  32. DeMartini, F., Innocenti, G., Jacobovitz, G. R., Mataloni, P. (1987) Phys. Rev. Lett. 59 2955–2958.

    Article  ADS  Google Scholar 

  33. Heinzen, D., Childs, J. J., Thomas, J. E., Feld, M. S. (1987), Phys. Rev. Lett. 58, 1320–1323.

    Article  ADS  Google Scholar 

  34. Brune, M. Raymond, J. M., Haroche, S., to be publihsed.

    Google Scholar 

  35. Raizen, M. G., Thomason, R. J., Brecha, R. J., Kimble, H. J., Carmichael, H. J. (1989) Phys. Rev. Lett. 63, 240–243.

    Article  ADS  Google Scholar 

  36. Zhu, Y., Gauthbier, D. J., Morin, S. E., Wu, Q., Carmichael, H. J., Mossberg, T. W. (1990), Phys. Rev. Lett. 64, 2499–2502.

    Article  ADS  Google Scholar 

  37. DeMartini, F., Jacobovitz, G. R. (1988), Phys. Rev. Lett. 60, 1711–1714.

    Article  ADS  Google Scholar 

  38. Björk, G., Yamamoto, Y. (1991) IEEE J. Quantum Electron 27, 2386–2396.

    Article  ADS  Google Scholar 

  39. Yamamoto, Y., Björk, G., Karlsson, A., Heitmann H., Matinaga, F. M. (1993) Int. J. Mod. Phys. B 7, 1653–1695

    Article  ADS  Google Scholar 

  40. Baba, T., Hamano, T., Koyama, F., Iga, K. (1991) IEEE J. Quantum Electron 27, 1347–1358.

    Article  ADS  Google Scholar 

  41. Matinaga, F. M., Karlsson, A., Machida, S., Yamamoto, Y., Suzuki, T., Kadota, Y., Ikeda, M. (1993) Appl., Phys. Lett. 62, 443–446

    Article  ADS  Google Scholar 

  42. Caves, C. M., Thorne, K. S., Drever, R. W. P., Sandberg, V. D., Zimmermann, M. (1980), Rev. Mod. Phys. 52, 341–392.

    Article  ADS  Google Scholar 

  43. Imoto, N., Haus, H. A., Yamamoto, Y. (1985), Phys. Rev. A32, 2287–2292.

    ADS  Google Scholar 

  44. Kitagawa, M., Imoto, N., Yamamoto, Y. (1987), Phys. Rev. A 35, 5270–5273.

    Article  ADS  Google Scholar 

  45. Friberg, S. R., Machida, S., Yamamoto, Y. (1992), Phys. Rev. Lett. 69, 3165–3168.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yamamoto, Y. (1997). Quantum Optics. In: Sohn, L.L., Kouwenhoven, L.P., Schön, G. (eds) Mesoscopic Electron Transport. NATO ASI Series, vol 345. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8839-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8839-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4906-3

  • Online ISBN: 978-94-015-8839-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics