Skip to main content

Conductance Quantization in Metallic Nanowires

  • Chapter
Mesoscopic Electron Transport

Part of the book series: NATO ASI Series ((NSSE,volume 345))

Abstract

Recent investigations carried out in our group concerning the conductance quantization of metallic nanowires are reviewed. These include: i) The formation of metallic nanowires between macroscopic electrodes, including liquid metals, demonstrating that at the last stages of the contact breakage, a nanowire exists, independently of the initial contact size. ii) A statistical study of the conductance using thousands of consecutive contact breakage experiments, both at room and at liquid helium temperatures. These histograms, totally reproducible, present clear peaks close to integer values of the quantum of conductance G0=2e2/h for diamagnetic metals like Gold, Silver, Copper, Sodium, Platinum.... Ferromagnetic metals, Iron, Cobalt and Nickel, exhibit a flat conductance histogram. This effect is attributed to the combination of the lifting of the spin degeneracy in the ferromagnetic nanowires and the effect of geometry and disorder. The measured conductance histograms are basically independent of the temperature. iii) A discussion of the position and width of the observed peaks. Just geometrical effects can not explain the large conductance peak shifts observed experimentally, and disorder, behaving as a residual resistance, has to be invoked to explain them. iv) First realization of conductance quantization in Bi at 4K. Conductance plateaus lasting 20-100 nm electrode separation are presented; the histogram displays also clear peaks. v) A statistical study of the conductance plateau duration, demonstrating a broad distribution of this duration, 0.05-0.4 nm, with an average value that decreases as conductance increases. vi) A discussion of force and energy quantization within a resonant energy model of two reservoirs connected by a ballistic channel. vii) Experiments performed in ultra high vacuum, where we manage to stabilize the nanowires for hours and study switching and current voltage characteristics for different quantum conductance channels with remarkable accuracy. viii) Visualization inside scanning and transmission electron microscopes of the metallic contact between two macroscopic electrodes at the micron and nanometer scales. These experiments provide experimental evidence of the formation of a connective neck between the electrodes. ix) Experiments on light emission from breaking nanowires. A plausible explanation for this phenomenon is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Wees, B.J., van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., van der Marel, D. and Foxon, C.T. (1988) Phys. Rev. Lett. 60, 848;

    Article  ADS  Google Scholar 

  2. Wharham, D.A., Thornton, T.J., Newbury, R., Pepper, M., Ahmed, H., Frost, J.E.F., Hasko, D.G., Peacock, D.C., Ritchie, D.A. and Jones, G.A.C. (1988) J. Phys. C 21, L209.

    Article  ADS  Google Scholar 

  3. Joint European-American-Japanese Conference on Future Information Technologies, Helsinki, Finland (1995).

    Google Scholar 

  4. Anderson, P.W. (1958) Phys. Rev. 109, 1492.

    Article  ADS  Google Scholar 

  5. Lang, N.D. (1987) Phys. Rev. B 36, 8173.

    Article  ADS  Google Scholar 

  6. Landauer, R. (1989) J. Phys. Condens. Matter 1, 8099.

    Article  ADS  Google Scholar 

  7. García, N. and Escapa, L. (1989) Appl. Phys. Lett. 54, 1418;

    Article  ADS  Google Scholar 

  8. García, N. (1987) presentation at the STM Workshop, International Centre for Theoretical Physics, Trieste.

    Google Scholar 

  9. See for the 2D electron gas the review by Beenaker, C.W.J. and Houten, H.V. (1991) in Solid State Phys.44, edited by Ehrenreich, H. and Turnbull, D., Academic, New York.

    Google Scholar 

  10. Kander, E., Imry, Y., and Sivan, U. (1990) Phys. Rev. B 41, 12941.

    Article  ADS  Google Scholar 

  11. Garcia, R. and Garcia, N. (1991) Surf. Science 251/252, 408.

    Google Scholar 

  12. Torres, J., Pascual, J.I. and Sáenz, J.J. (1994) Phys. Rev. B 49, 16581.

    Article  ADS  Google Scholar 

  13. Bogachek, E.N., Zagoskin, A.M. and Kulik, I.O. (1990) Sov. J. Low Temp. Phys. 16, 796.

    Google Scholar 

  14. García-Mochales, P., Serena, P.A., Garcia, N. and Costa-Krämer, J.L. (1996) Phys. Rev. B 563, 10268.

    Article  ADS  Google Scholar 

  15. Todorov T.N. and Briggs, G.A.D. (1994) J. Phys. Condens. Matter 6, 2559.

    Article  ADS  Google Scholar 

  16. Landman, U., Luedtke, W.D., Burnham, N.A. and Colton, R.J. (1990) Science 248, 454

    Article  ADS  Google Scholar 

  17. Landman U. and Luedtke, W.D. (1991) J. Vac. Sci. Technol. 9, 414.

    Google Scholar 

  18. Todorov, T.N. and Sutton, P. (1992) Phys. Rev. B 70, 2138.

    Google Scholar 

  19. Bratkovsky, A.M., Sutton, A.P. and Todorov, T.N. (1995) Phys. Rev. B 52, 5036.

    Article  ADS  Google Scholar 

  20. Pascual, J.I., Méndez, J., Gómez-Herrero, J., Baró, A.M., Garcia, N., Landman, U., Luedtke, W.D., Bogacheck, E.N., Cheng, H.-P. (1995) Science 267, 1793.

    Article  ADS  Google Scholar 

  21. Binnig, G., Rohrer, H., Gerber, Ch. and Weibel, E. (1982) Phys. Rev. Lett. 49, 57.

    Article  ADS  Google Scholar 

  22. Pascual, J.I., Méndez, J., Gómez-Herrero, J., Baró, A.M., García, N. and Binh, V.T. (1993) Phys. Rev. Lett. 71, 1852.

    Article  ADS  Google Scholar 

  23. Olesen, L., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Schiotz, J., Stoltze, P., Jacobsen, K.W. and Norskov, J.K. (1994) Phys. Rev. Lett. 72, 2251.

    Article  ADS  Google Scholar 

  24. Brandbyge, M., Schiotz, J., Sorensen, M.R., Stoltze, P., Jacobsen, K.W., Norskov, J.K., Olesen, L., Laegsgaard, E., Stensgaard, I. and Besenbacher, F.(1995) Phys. Rev. B 52, 8499.

    Article  ADS  Google Scholar 

  25. Agraït, N., Rodrigo, J.G. and Vieira, S. (1993) Phys. Rev. B 47, 12345.

    Article  ADS  Google Scholar 

  26. Agraït, N., Rubio, G. and Vieira, S. (1995) Phys. Rev. Lett. 74, 3995.

    Article  ADS  Google Scholar 

  27. Muller, C.J., van Ruitenbeek, J.M. and de Jongh, L.J. (1992) Phys. Rev. Lett. 69, 140.

    Article  ADS  Google Scholar 

  28. Krans, J.M., Muller, C.J., Yanson, I.K., Govaert, Th.C.M., Hesper, R. and van Ruitenbeek, J.M. (1993) Phys. Rev. B 48, 14721.

    Article  ADS  Google Scholar 

  29. J.M. Krans, Krans J.M., Muller, C.J., van der Post, N., Postma, F.R., Sutton, A.P., Todorov, T.N. and van Ruitenbeek, J.M. (1995) Phys. Rev. Lett. 74, 2146

    Article  ADS  Google Scholar 

  30. See Comment by Olesen L. et al, (1995) Phys. Rev. Lett. 74, 2147.

    Article  MathSciNet  ADS  Google Scholar 

  31. Krans, J.M., van Ruitenbeek, J.M., Fisun, V.V., Yanson, I.K. and de Jongh, L.J. (1995) Nature (London) 375, 767.

    Article  ADS  Google Scholar 

  32. Smith, D.P.E. (1995) Science 269, 371.

    Article  ADS  Google Scholar 

  33. Costa-Krämer, J.L., García, N., Garcia-Mochales P. and Serena, P.A. (1995) Surf. Sci. 342, L 1144.

    Article  ADS  Google Scholar 

  34. Besenbacher, F., Olesen, L., Hansen, K., Laegsgaard, E. and Stensgaard, I. (1996), to be published in NATO ASI Series E (eds. P.A. Serena and N. Garcia, Kluwer Academic Publishers, Dordretch).

    Google Scholar 

  35. Costa-Krämer, J.L., García N. and Olin, H. “Conductance Quantization Histograms of Gold Nanowires at 4K”, submitted to Phys. Rev. B.

    Google Scholar 

  36. Costa-Krämer J.L. and García, N. Phys. Rev. B (in press).

    Google Scholar 

  37. Costa-Krämer J.L. and Garcia, N. (1996) Europhysics News 27, 89.

    Google Scholar 

  38. Krans J.M. and van Ruitenbeek J.M. (1994) Phys. Rev. B 50, 17659.

    Article  ADS  Google Scholar 

  39. Wharam, D.A., Thornton, T.J., Newbury, R., Pepper, M., Ahmed, H., Frost, J.E.F., Hasko, D.G., Peacock, D.C., Ritchie, D.A. and Jones, G.A.C. (1988) J. Phys. C 21, L209

    Article  ADS  Google Scholar 

  40. van Wees, B.J., van Houten, H., Beenakker, C.W.J., Williamson, J.G., van der Marel, D. and Foxton, C.T. (1988) Phys. Rev. Lett. 60, 848.

    Article  ADS  Google Scholar 

  41. Costa-Krämer, J.L., García, N., García-Mochales, P., Serena., P.A., Marqués, M.I. and Correia, A. “Conductance Quantization in Nanowires Formed Between Micro and Macroscopic Metallic Electrodes”, Phys. Rev. B (in press).

    Google Scholar 

  42. Costa-Krämer, J.L., Garcia N. and Olin, H. “Conductance Quantization in Bismuth Nanowires at 4K”, submitted to Phys. Rev. Lett.

    Google Scholar 

  43. McDonald S.W. and Kaufman, A.N. (1979) Phys. Rev. Lett. 42, 1189;

    Article  ADS  Google Scholar 

  44. McDonald S.W. and Kaufman, A.N. (1988) Phys. Rev. A 37, 3067 and references therein.

    Article  MathSciNet  ADS  Google Scholar 

  45. Bohigas, O., Giannoni, M.J., and Schmit, C. (1983) Phys. Rev. Lett. 52, 1.

    Article  MathSciNet  ADS  Google Scholar 

  46. Berry, M.V. and Tabor, M. (1977) Proc. Roy. Soc. London 356, 375

    Article  ADS  MATH  Google Scholar 

  47. García-Mochales P., Serena, P.A., García N. and Costa-Krämer, J.L. “Quantum states of nanocontacts formed between macroscopic wires”, submitted to Europhysics Letters.

    Google Scholar 

  48. Rubio, G., Agraït N. and Vieira, S. (1996) Phys. Rev. Lett. 76, 2302.

    Article  ADS  Google Scholar 

  49. Julian Chen, C. (1993) Introduction to Scanning Tunneling Microscopy, New-York, Oxford university Press.

    Google Scholar 

  50. Garcia N. and Binh, V.T. (1992) Phys. Rev. B 46, 7946;

    Article  ADS  Google Scholar 

  51. Goodman F.O. and Garcia, N. (1991) Phys. Rev. B 43, 4728.

    Article  ADS  Google Scholar 

  52. Ohnesorge F. and Binning, G. (1993) Science 260, 1451.

    Article  ADS  Google Scholar 

  53. Landauer, R. (1989) J. Phys. Condens. Matter 1, 8099.

    Article  ADS  Google Scholar 

  54. Imry J. (1986) Directions in Condensed Matter Physics, (ed. G. Grinstein and G. Masenko, World Scientific Publ., Singapore), 101.

    Google Scholar 

  55. Glazman L.I. and Khaetskii, A.V. (1989) Europhys. Lett. 9(3), 263.

    Article  ADS  Google Scholar 

  56. Patel, N.K., Martin-Moreno, L., Pepper, M., Newbury, R., Frost, J.E.F., Ritchie, D.A., Jones, G.A.C., Jansses, J.T.M.B., Singleton J. and Perenboom, J.A.A.J. (1990) J. Phys. Condens. Matter 3, 7247.

    Article  ADS  Google Scholar 

  57. Castarño E. and Kirczenow, G. (1990) Phys. Rev. B 41, 3874.

    Article  ADS  Google Scholar 

  58. Fukuyama H. and Kubo, R. (1970) J. Phys. Soc. of Japan 28(3), 570; Fukuyama, H. private communication.

    Article  ADS  Google Scholar 

  59. Wolff, P.A. (1964) J. Phys. Chem. Solids 25, 1057.

    Article  ADS  Google Scholar 

  60. Escapa L. and Garcia, N. (1990) Appl. Phys. Lett. 56, 901.

    Article  ADS  Google Scholar 

  61. Dremov, V.V. and Shapoval, S.Yu. (1995) JEPT Lett. 61, 337.

    ADS  Google Scholar 

  62. Kane C.L. and Fisher, M.P.A. (1993) Phys. Rev. B 46, 15233

    Article  ADS  Google Scholar 

  63. Maslov D.L. and Stone, M. (1995) Phys. Rev. B 52, R5539.

    Article  ADS  Google Scholar 

  64. Correia A. and Garcia N., Phys. Rev. B (in press).

    Google Scholar 

  65. Correia A., M.I. Marqués and Garcia N, submitted to J. of Vac. Sc. and Techn. B.

    Google Scholar 

  66. Welland M. et al (1996) To be published. The suggestion that there should be light emission in this experiments at low voltage, presumably due to plasmon relaxation, was made by J. Sass from Berlin.

    Google Scholar 

  67. Belotskii, E.D., Luk’yanets S.N and Tomchuk PM. (1992) Soviet Physics JEPT 74(1), 88.

    Google Scholar 

  68. Bischoff, M. and Pagnia, H. (1975) Thin solidfilms 29, 303.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

García, N., Costa-Krämer, J.L., Gil, A., Marqués, M.I., Correia, A. (1997). Conductance Quantization in Metallic Nanowires. In: Sohn, L.L., Kouwenhoven, L.P., Schön, G. (eds) Mesoscopic Electron Transport. NATO ASI Series, vol 345. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8839-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8839-3_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4906-3

  • Online ISBN: 978-94-015-8839-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics