Skip to main content

Quantum Point Contacts Between Metals

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 345))

Abstract

In the chapter by Kouwenhoven, Schön and Sohn, the phenomenon of quantization of the conductance is introduced. The phenomenon is a consequence of the wave nature of the charge carriers. In a conductor for which the width is not very much larger than the Fermi wavelength, it is useful to describe the conductance, G, in terms of the Landauer-Büttiker expression

$$G = \frac{{2{e^2}}}{h}\sum\limits_n {{T_n}} $$
(1)

where the T n describe the transmission probability for each of the modes at the entrance of the conductor and the sum runs over all occupied modes. If we can contrive our experiment in such a way that the T n are equal to 1, up to a mode number N, and equal to zero for all other modes, then the conductance assumes values which are an integer times the quantum unit of conductance, G0 = 2e2/h. It turns out to be possible to fabricate conductors which have precisely this property, as was beautifully demonstrated in the seminal experiments by van Wees et al. [1] and Wharam et al. [2] on a two-dimensional electron gas (2DEG) semiconductor device.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Wees, B.J., van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., van der Marel, D. and Foxon, C.T. (1988) Quantized conductance of point contacts in a two-dimensional electron gas, Phys. Rev. Lett. 60, pp. 848–850.

    Article  ADS  Google Scholar 

  2. Wharam, D.A., Thornton, T.J., Newbury, R., Pepper, M., Ahmed, H., Frost, J.E.F., Hasko, D.G., Peacock, D.C., Ritchie, D.A. and Jones, G.A.C. (1988) Onedimensional transport and the quantization of the ballistic resistance, J. Phys. C 21, pp. L209-L214.

    Article  ADS  Google Scholar 

  3. Gimzewski, J.K. and Welland, M.E., eds. (1995) The ultimate limits of fabrication and measurement, NATO-ASI Series E: Applied Sciences, 292 Kluwer Academic Publishers, Dordrecht;

    Google Scholar 

  4. Singer, I.L. and Pollock, H.M., eds. (1992) Fundamentals of friction:macroscopic and microscopic processes, NATO-ASI Series E: Applied Sciences, 220 Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  5. Khotkevich, A.V. and Yanson, I.K.(1995) Atlas of point contact spectra of electronphonon interactions in metals. Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  6. van Ruitenbeek, J.M. and Jansen, A.G.M., eds. (1996) Proceedings of the Second International Conference on Point Contact Spectroscopy, Physica B 218.

    Google Scholar 

  7. Yanson, I.K. (1974) Nonlinear effects in the electric conductivity of point junctions and electron-phonon interaction in metals, Zh. Eksp. Teor. Fiz. 66 pp. 1035–1050

    Google Scholar 

  8. Yanson, I.K. (1974) Nonlinear effects in the electric conductivity of point junctions and electron-phonon interaction in metals, (1974 Sov. Phys.-JETP 39 pp. 506–513).

    ADS  Google Scholar 

  9. Jansen, A.G.M., van Gelder, A.P. and Wyder, P. (1980) Point-contact spectroscopy in metals, J. Phys. C: Solid St. Phys. B 13 pp. 6073–6118.

    Article  ADS  Google Scholar 

  10. Tsoi, V.S. (1974) Focussing of electrons in a metal by a transverse magnetic field, Zh. ETF Pis. Red. 19 pp. 114–116

    ADS  Google Scholar 

  11. Tsoi, V.S. (1974) Focussing of electrons in a metal by a transverse magnetic field, (1974 JETP Lett. 19 pp. 70–71).

    ADS  Google Scholar 

  12. Benistant P.A.M., van Kempen, H. and Wyder, P. (1983) Direct observation of Andreev reflection, Phys. Rev. Lett. 51 pp. 817–820.

    Article  ADS  Google Scholar 

  13. Ralls, K.S. and Buhrman, R.A. (1988) Defect interactions and noise in metallic nanoconstrictions Phys. Rev. Lett. 60 pp. 2434–2438.

    Article  ADS  Google Scholar 

  14. Gimzewski, J.K., and Möller, R. (1987) Transition from the tunneling regime to point contact studied using scanning tunneling microscopy, Phys. Rev. B, 36, pp. 1284–1287.

    Article  ADS  Google Scholar 

  15. Smith, D.P.E. (1995) Quantum point contact switches, Science, 269, pp. 371–373.

    Article  ADS  Google Scholar 

  16. Moreland, J and Ekin, J.W. (1985) Electron tunneling experiments using Nb-Sn “break” junctions, J. Appl. Phys. 58 pp. 3888–3895.

    Article  ADS  Google Scholar 

  17. Muller, C.J., van Ruitenbeek, J.M., and de Jongh, L.J. (1992) Experimental observation of the transition from weak link to tunnel junction, Physica C 191, pp. 485–504.

    Article  ADS  Google Scholar 

  18. Muller, C.J., van Ruitenbeek, J.M. and de Jongh, L.J., (1992) Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width, Phys. Rev. Lett., 69, pp. 140–143.

    Article  ADS  Google Scholar 

  19. Muller, C.J (1996) An experimental study on mechanically controllable break junctions. PhD. thesis, Leiden, The Netherlands.

    Google Scholar 

  20. Krans, J.M., Muller, C.J., Yanson, I.K., Govaert, Th.C.M., Hesper, R. and van Ruitenbeek, J.M. (1993) One-atom point contacts, Phys. Rev. B, 48, pp. 14721–14724.

    Article  ADS  Google Scholar 

  21. Krans, J.M. (1996) Size effects in atomic-scale point contacts PhD. thesis, Leiden, The Netherlands.

    Google Scholar 

  22. van der Post, N. and van Ruitenbeek, J.M. (1996) High stability STM made of a break junction. Proceedings of the 21st Int. Conf. on Low. Temp. Phys., Chech. J. Phys. 46- suppl. pp. 2853–2854.

    Google Scholar 

  23. Ruitenbeek, J.M. van, Alvarez, A., Piñeyro, I., Grahmann, C., Joyez, P., Devoret, M.H., Esteve, D., and Urbina, C. (1996) Adjustable nanofrabricated atomic size contacts, Rev. Sci. Instrum. 67. pp. 108–111.

    Article  ADS  Google Scholar 

  24. Zhou, C., Muller, C.J., Deshpande, M.R., Sleight, J.W. and Reed, M.A. (1995) Microfabrication of a mechanically controllable break junction in silicon, Appl. Phys. Lett., 67, pp. 1160–1162.

    Article  ADS  Google Scholar 

  25. Koops, M.C. and de Bruyn-Ouboter, R. (1996) Direct observation of the currentphase relation of an adjustable superconducting point contact Phys. Rev. Lett. in print.

    Google Scholar 

  26. Agraït, N., Rodrigo, J.G. and Vieira, S. (1993) Conductance steps and quantization in atomic-size contacts, Phys. Rev. B 47, pp. 12345–12348.

    Article  ADS  Google Scholar 

  27. Pascual, J.I., Méndez, J., Gómez-Herrero, J., Baró, A.M. and Garcia, N., (1993) Quantum contact in gold nanostructures by scanning tunneling microscopy, Phys. Rev. Lett., 71, pp. 1852–1855.

    Article  ADS  Google Scholar 

  28. Pascual, J.I., Méndez, J., Gómez-Herrero, J., Baró, A.M., Garcia, N., Landman, U., Luedtke, W.D., Bogachek, E.N. and Cheng, H.-P., (1995) Properties of metallic nanowaires: From conductance quantization to localization, Science, 267, pp. 1793–1795.

    Article  ADS  Google Scholar 

  29. Dremov, V.V. and Shapoval, S.Yu. (1995) Quantization of the conductance of metal nanocontacts at room temperature, JETP Lett., 61, pp. 336–339.

    ADS  Google Scholar 

  30. Landman, U., Luedtke, W.D., Salisbury, B.E. and Whetten, R.L. (1996) Reversible manipulations of room temperature mechanical and quantum transport properties in nanowire junctions. Phys. Rev. Lett. 77. pp. 1362–1365.

    Article  ADS  Google Scholar 

  31. Olesen, L., Lægsgaard, E., Stensgaard, I., Besenbacher, F., Schiøtz, J., Stoltze, P., Jacobsen, K.W. and Nørskov, J.K., (1994) Quantized conductance in an atom-sized point contact, Phys. Rev. Lett., 72, pp. 2251–2254.

    Article  ADS  Google Scholar 

  32. Brandbyge, M., Schiøtz, J., Sørensen, M.R., Stoltze, P., Jacobsen, K.W., Nørskov, J.K., Olesen, L., Lægsgaard, E., Stensgaard, I. and Besenbacher, F. (1995) Quantized conductance in atom-sized wires between two metals, Phys. Rev. B 52, pp. 8499–8514.

    Article  ADS  Google Scholar 

  33. Gai, Z., He, Y., Yu, H., and Yang, W.S. (1996) Observation of conductance quantization of ballistic metallic point contacts at room temperature, Phys. Rev. B 53, pp. 1042–1045.

    Article  ADS  Google Scholar 

  34. Agraït, N., Rodrigo, J.G., Sirvent, C. and Vieira, S. (1993) Atomic-scale connective neck formation and characterization, Phys. Rev. B 48, pp. 8499–8501.

    Article  ADS  Google Scholar 

  35. Sirvent, C., Rodrigo, J.G., Agraït, N. and Veira, S. (1996) STM study of the atomic contact between metallic electrodes, Physica B 218, pp. 238–241.

    Article  ADS  Google Scholar 

  36. Sirvent, C., Rodrigo, J.G., Vieira, S., Jurczyszyn, L., Mingo, N. and Flores, F. (1996) Conductance step for a single-atom contact in the scanning tunneling microscope: noble and transition metals, Phys. Rev. B 53, pp. 16086–16090.

    Article  ADS  Google Scholar 

  37. Rubio, G., Agraït, N., and Vieira, S. (1996) Atomic-sized metallic contacts: mechanical properties and electronic transport, Phys. Rev. Lett. 76, pp. 2302–2305.

    Article  ADS  Google Scholar 

  38. Agraït, N., Rubio, G., and Vieira, S. (1995) Plastic deformation of nanometer-scale gold connective necks, Phys. Rev. Lett. 74, pp. 3995–3998.

    Article  ADS  Google Scholar 

  39. Stalder, A., and Dürig, U. (1996) Study of plastic flow in ultrasmall Au contacts, J. Vac. Sci. Technol. B, 14, pp. 1259–1263.

    Article  Google Scholar 

  40. Costa-Krämer, J.L., García, N., García-Mochales, P., and Serena, P.A. (1995) Nanowire formation in macroscopic metallic contacts: quantum mechanical conductance tapping a table top, Surface Science 342, pp. L1144–L1149.

    Article  ADS  Google Scholar 

  41. Sharvin, Yu.V. (1965) A possible method for studying Fermi surfaces, Sov. Phys.JETP 21 pp. 655–656.

    ADS  Google Scholar 

  42. Weyl, H. (1911) Ueber die asymptotische Verteilung der Eigenwerte Nachr. Akad. Wiss. Göttingen, pp. 110–117.

    Google Scholar 

  43. García-Martin, A., Torres, J.A. and Sáenz, J.J. (1996) Finite size corrections to the conductance of ballistic wires, Phys. Rev. B, in print.

    Google Scholar 

  44. Bogachek, E.N., Zagoskin, A.N. and Kulik, I.O. (1990) Conductance jumps and magnetic flux quantization in ballistic point contacts, Sov. J. Low Temp. Phys. 16, pp. 796–800.

    Google Scholar 

  45. Glazman, L.I., Lesovick, G.B., Khmel’nitskii, D.E. and Shekhter, R.I. (1988) R,eflectionless quantum transport and fundamental ballistic-resistance steps in mesoscopic constrictions, JETP Lett., 48 pp. 238–241.

    ADS  Google Scholar 

  46. Bratkovsky, A.M. and Rashkeev, S.N. (1996) Electronic transport in nanoscale contacts with rough boundaries, Phys. Rev. B 53, pp. 1–12.

    Article  Google Scholar 

  47. Torres, J.A, Pascual, J.I. and Sáenz, J.J. (1994) Theory of conduction through narrow constrictions in a three-dimensional electron gas, Phys. Rev. B 49, pp. 16581–16584.

    Article  ADS  Google Scholar 

  48. Todorov, T.N., Briggs, G.A.D. and Sutton, A.P. (1993) Elastic quantum transport through small structures, J. Phys.: Cond. Matter 5, pp. 2389–2406.

    Article  ADS  Google Scholar 

  49. Bratkovsky, A.M., Sutton, A.P. and Todorov, T.N. (1995) Conditions for conductance quantization in realistic models of atomic-scale metallic contacts, Phys. Rev. B 52, pp. 5036–5051.

    Article  ADS  Google Scholar 

  50. Todorov, T.N. and Sutton, A.P. (1993) Jumps in electronic conductance due to mechanical instabilities, Phys. Rev. Lett. 70, pp. 2138–2141.

    Article  ADS  Google Scholar 

  51. Lang, N.D. (1987) Resistance of a one-atom contact in the scanning tunneling microscope, Phys. Rev. B 36, pp. 8173–8176.

    Article  ADS  Google Scholar 

  52. Lang, N.D. (1995) Resistance of atomic wires, Phys. Rev. B 52, pp. 5335–5342.

    Article  ADS  Google Scholar 

  53. Ferrer, J., Martin-Rodero, A. and Flores, F. (1988) Contact resistance in the scanning tunneling microscope at very small distances, Phys. Rev. B 38, pp. 10113–10115.

    Article  ADS  Google Scholar 

  54. Krans, J.M., van Ruitenbeek, J.M. and de Jongh, L.J. (1996) Atomic structure and quantized conductance in metal point contacts, Physica B 218, pp. 228–233.

    Article  ADS  Google Scholar 

  55. Landman, U., Luedtke, W.D., Burnham, N.A. and Colton, R.J. (1990) Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture, Science 248, pp. 454–461.

    Article  ADS  Google Scholar 

  56. Krans, J.M. and van Ruitenbeek, J.M. (1994) Subquantum conductance steps in atom-sized contacts of the semimetal Sb, Phys. Rev. B50, pp. 17659–17661.

    ADS  Google Scholar 

  57. Torres, J.A., and Sáenz, J.J. (1996) Conductance steps in point contacts: quantization or cross-section jumps? Physica B, 218, pp. 234–237.

    Article  ADS  Google Scholar 

  58. Torres, J.A. and Sáenz, J.J. (1996) Conductance and mechanical properties of atomic-size metallic contacts: a simple model, Phys. Rev. Lett., in print.

    Google Scholar 

  59. Todorov, T.N., and Sutton, A.P. (1996) Force and conductance jumps in atomicscale metallic contacts, Submitted to Phys. Rev. B, Rapid Commun..

    Google Scholar 

  60. Olesen, L., Lægsgaard, E., Stensgaard, I., Besenbacher, F., Schiøtz, Stoltze, P., Jacobsen, K.W. and Nørskov, J.K. (1995) Reply on Comment on Quantized conductance in an atom-sized point contact, Phys. Rev. Lett., 74, p. 2147.

    Article  ADS  Google Scholar 

  61. Krans, J.M., Ruitenbeek, J.M. van, Fisun, Yanson, I.K. and Jongh, L.J. de (1995) The signature of-conductance quantization in metallic point contacts, Nature, 375, pp. 767–769.

    Article  ADS  Google Scholar 

  62. Moore, W.J. (1972) Physical Chemistry. Longman Publishers, London, p. 692.

    Google Scholar 

  63. Muller, C.J., Krans, J.M., Todorov, T.N., and Reed, M.A. (1996) Quantization effects in the conductance of metallic contacts at room temperature, Phys. Rev. B 53, pp. 1022–1025.

    Article  ADS  Google Scholar 

  64. Garcia, N., this volume.

    Google Scholar 

  65. Rubio, G. and Agraït, N., private communication.

    Google Scholar 

  66. Beenakker, C.W.J. and van Houten, H. (1991) Josephson current through a superconducting quantum point contact shorter than the coherence length, Phys. Rev. Lett., 66, pp. 3056–3060.

    Article  ADS  Google Scholar 

  67. Muller, C.J., Koops, M.C., Vleeming, B.J., de Bruyn Ouboter, R. and Omelyanchouk, A.N. (1994) Reduction of the Andreev scattering processes in ultra-small superconducting point contacts with direct conductivity, Physica C 220, pp. 258–264.

    Article  ADS  Google Scholar 

  68. Urbina, C., Esteve,D. and Devoret, M.H. (1996), private communications.

    Google Scholar 

  69. Vleeming, B.J., Muller, C.J., Koops, M.C. and de Bruyn Ouboter, R. (1994) Singleatom point contacts in the superconducting state, Phys. Rev. B, 50, pp. 16741–16744.

    Article  ADS  Google Scholar 

  70. van der Post, N., Peters, E.T., Yanson, I.K. and van Ruitenbeek, J.M. (1994) Subgap structure as a function of the barrier in atom-size superconducting tunnel junctions, Phys. Rev. Lett. 73, pp. 2611–2613.

    Article  ADS  Google Scholar 

  71. Schrieffer, J.R. and Wilkins, J.W. (1963) Two-particle tunneling processes between superconductors, Phys. Rev. Lett. 10, pp. 17–20.

    Article  ADS  MATH  Google Scholar 

  72. Klapwijk, T.M., Blonder, G.E. and Tinkham, M. (1982) Explanation of subharmonic energy gap structure in superconducting contacts, Physica 109 & 110B, pp. 1657–1664.

    Google Scholar 

  73. Kleinsasser, A.W., Miller, R.E., Mallison, W.H. and Arnold, G.B. (1994) Observation of multiple Andreev reflections in superconducting tunnel junctions, Phys. Rev. Lett. 72 pp. 1738–1741.

    Article  ADS  Google Scholar 

  74. Arnold, G.B. (1987) Superconducting tunneling without the tunneling Hamiltonian. II. Subgap harmonic structure, J. Low Temp. Phys., 68 pp. 1–27.

    Article  ADS  Google Scholar 

  75. Bratus, E.N., Shumeiko, V.S. and Wendin, G. (1995) Theory of subharmonic gap structure in superconducting mesoscopic tunnel contacts, Phys. Rev. Lett., 74, pp. 2110–2113.

    Article  ADS  Google Scholar 

  76. Averin, D. and Bardas, D. (1995) Josephson effect in a single quantum channel Phys. Rev. Lett., 75, pp. 1831–1834.

    Article  ADS  Google Scholar 

  77. Naidyuk, Yu.G., Shklyarevskii, O.I. and Yanson, I.K. (1982) Microcontact spectroscopy of dilute magnetic alloys CuMn and CuFe, Sov. J. Low Temp Phys., 8, pp. 362–365

    Google Scholar 

  78. Yanson, I.K., Fisun, V.V., Hesper, R., Khotkevich, A.V., Krans, J.M., Mydosh, J.A. and van Ruitenbeek, J.M. (1995) Size dependence of Kondo scattering in point contacts Phys. Rev. Lett. 74, pp. 302–305

    Article  ADS  Google Scholar 

  79. Zaránd, G. and Udvardi, L. (1996) Role of the local density of states fluctuations in metallic point contatcs, Physica B 218 pp. 68–72. and preprint.

    Article  ADS  Google Scholar 

  80. van der Post, N., Mettes, F.L., Mydosh, J.A., van Ruitenbeek, J.M. and Yanson, I.K. (1996) Size dependence of Kondo scattering in point contacts: Fe impurities in Cu, Phys. Rev. B, 53 pp. R476-R479.

    Article  ADS  Google Scholar 

  81. Ralph, D.C. and Buhrman, R.A. (1992) Observations of Kondo scattering without magnetic impurities: a point contact study of two-level tunneling systems in metals, Phys. Rev. Lett., 69 pp. 2118–2121.

    Article  ADS  Google Scholar 

  82. Ralph, D.C. and Buhrman, R.A. (1995) Kondo scattering from atomic two-level tunneling systems in metals: Enhanced conductance, critical-bias transitions, and the non-Fermi-liquid electronic state, Phys. Rev. B, 51 pp. 3554–3568.

    Article  ADS  Google Scholar 

  83. Keijsers, R.J.P., Shklyarevskii, O.I. and van Kempen, H. (1995) Two-level-systemrelated zero-bias anomaly in point-contact spectra, Phys. Rev. B, 51 pp. 5628–5634.

    Article  ADS  Google Scholar 

  84. Zawadowski, A. (1980) Kondo-like state in a simple model for metallic glasses, Phys. Rev. Lett., 45 pp. 211–214.

    Article  ADS  Google Scholar 

  85. Muramatsu, A. and Guinea, F. (1986) Low-temperature behavior of a tunneling atom interacting with a degenerate electron gas, Phys. Rev. Lett., 57 pp. 2337–2340.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Ruitenbeek, J.M. (1997). Quantum Point Contacts Between Metals. In: Sohn, L.L., Kouwenhoven, L.P., Schön, G. (eds) Mesoscopic Electron Transport. NATO ASI Series, vol 345. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8839-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8839-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4906-3

  • Online ISBN: 978-94-015-8839-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics