Skip to main content

Introduction to Invasive Assessment of the Coronary Circulation

  • Chapter
Book cover Coronary Pressure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 195))

  • 54 Accesses

Abstract

The problem of knowing whether a given epicardial stenosis can be held responsible for myocardial ischemia, and conversely, whether the patient will be improved by the revascularization of that stenosis, are among the most common and important questions in the catheterization laboratory. Traditionally, cardiologists base their clinical decisions about the adequacy or inadequacy of myocardial perfusion in any given patient on inferences or predictions deduced from patients’ symptoms, non-invasive testing, and morphological data provided by the coronary angiogram. Direct information about myocardial perfusion is mostly not available. Boosted by the emergence of interventional cardiology, several catheter-based techniques have been developed to assist cardiologists in clinical decision-making with respect to the appropriateness of revascularization of a particular stenosis. These techniques are based on a morphological or a functional approach and are briefly reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sones FM, Shirey EK. Cine coronary arteriography. Med Concepts Cardiovasc Dis 1962;31:735–738.

    Google Scholar 

  2. Judkins MP. Selective coronary arteriography. I. A percutaneous transfemoral approach. Radiology 1967;89:815–824.

    PubMed  CAS  Google Scholar 

  3. Grondin CM, Dyrda I, Pasternac A, Campeau L, Bourassa MG, Lesperance J. Discrepancies between cine angiography and post-mortem findings in patients with coronary artery disease and recent revascularization. Circulation 1974;49:503–708.

    Article  Google Scholar 

  4. Arnett EN, Isner JM, Redwood DR. Coronary artery narrowing in coronary heart disease: comparison of cine angiographic and necropsy findings. Ann Intern Med 1979; 91:350–356.

    Article  PubMed  CAS  Google Scholar 

  5. Isner JM, Kishel J, Kent KM. Accuracy of angiogaphic determination of left main coronary arterial narrowing. Circulation 1981;63:1056–1061.

    Article  PubMed  CAS  Google Scholar 

  6. Zir LM, Miller SW, Dinsmore RF, Gilbert JP,Harthome JW. Interobserver variability in coronary arteriography. Circulation 1976;53:627–632.

    Article  PubMed  CAS  Google Scholar 

  7. De Rouen TA, Murray JA, Owen W. Variability in the analysis of the coronary angiograms. Circulation 1977;55:324–328.

    Article  Google Scholar 

  8. Beauman GJ, Vogel RA. Accuracy of individual and panel visual interpretations of coronary arteriograms: implications for clinical decisions. J Am Coll Cardiol 1990; 16:108–113.

    Article  PubMed  CAS  Google Scholar 

  9. Meier B, Gruentzig AR, Goebel N, Pyle R, Van Gosslar W, Schlumf M. Assessment of stenoses in coronary angioplasty inter-and intra observer variability. Int J Cardiol 1983;3:159–169.

    Article  PubMed  CAS  Google Scholar 

  10. Brown BG, Bolson E, Frimer M, Dodge HT. Quantitative coronary angiography: estimation of dimensions, hemodynamic resistance and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 1977;53:329–337.

    Article  Google Scholar 

  11. Gould KL, Kelly KO, Bolson EL. Experimental validation of quantitative coronary angiography for determining pressure flow characteristics of coronary stenosis. Circulation 1982;66:930–937.

    Article  PubMed  CAS  Google Scholar 

  12. Reiber JHC, Serruys PW, Kooijman CJ, Wijns W, Slager CJ, Gerbrands JJ, Schuurbiers JCH, den Boer A, Hugenholtz PG. Assessment of short-, medium-, and longterm variations in arterial dimension from computer assisted quantification of coronary cine angiograms. Circulation 1985;71:280–288.

    Article  PubMed  CAS  Google Scholar 

  13. de Feyter PJ, Serruys PW, Davies MJ, Richardson P, Lubsen J, Oliver MF. Quantitative coronary angiography to measure progression and regression of coronary atherosclerosis : value, limitations, and implications for clinical trials. Circulation 1991; 84:412–423.

    Article  PubMed  Google Scholar 

  14. Serruys PW, Foley DP, Kirkeeide RL, King SB. Restenosis revisited: Insights provided by quantitative coronary angiography. Am Heart J1993;126:1243–1267.

    Article  PubMed  CAS  Google Scholar 

  15. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx GR, Emanuelsson H, Marco J, Legrand V, Materne P, Belardi J, Sigwart U, Colombo A, Goy JJ, Van Den Heuvel P, Delcan J, Morel M.A. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. New Engl J Med 1994;331:489–495.

    Article  PubMed  CAS  Google Scholar 

  16. Topol EJ, Leya F, Pinkerton CA, Whitlow PL, Hofling B, Simonton CA, Masden RR, Serruys PW, Leon MB, Williams DO, King III SB, Mark DB, Isner JM, Holmes DR, Ellis SG, Lee KL, Keeler GP, Berdan LG, Hinohara T, Calif RM, for the Caveat study group. A comparison of directional atherectomy with coronary angioplasty in patients with coronary artery disease. New Engl J Med 1993;329:221–227.

    Article  PubMed  CAS  Google Scholar 

  17. Brown G, Albers JJ, Fischer LD. Regression of coronary artery disease as a result of intensive lipid-lowering therapy with high levels of apolipoprotein B. New Engl J Med 1990;323 :1289–1298.

    Article  PubMed  CAS  Google Scholar 

  18. Scandinavian Simvastatin Survival Study Group. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994;344:1383–1389.

    Google Scholar 

  19. Wilson RF, Marcus ML, White CW. Prediction of the physiological significance of coronary arterial dimensions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation 1987;75:723–732.

    Article  PubMed  CAS  Google Scholar 

  20. Zijlstra F, van Ommeren J, Reiber JHC, Serruys PW. Does quantitative assessment of coronary artery dimensions predict the physiological significance of a coronary stenosis? Circulation 1987;75:1154–1161.

    Article  PubMed  CAS  Google Scholar 

  21. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML. Does visual interpretation of the coronary arteriogram predict physiological importance of a coronary stenosis. N Eng J Med 1984;310:819–824.

    Article  CAS  Google Scholar 

  22. Folland ED, Vogel RA, Hartigan P, Bates ER, Beauman GJ, Fortin T, Boucher C, Parisi AF, and the Veterans Affairs ACME Investigators. Relation between coronary artery stenosis assessed by visual, caliper and computer methods and exercise capacity in patients with single-vessel coronary artery disease. Circulation 1994;89:2005–2014.

    Article  PubMed  CAS  Google Scholar 

  23. Bartunek J, Sys SU, Heyndrickx GR, Pijls NHJ, De Bruyne B. Quantitative coronary angiography in predicting functional significance of stenoses in an unselected patient cohort. J Am Coll Cardiol 1995;26:328–334

    Article  PubMed  CAS  Google Scholar 

  24. Tobis J, Nalciogly O, Johnston WD, et al. Videodensitometric determination of minimum coronary artery luminal diameter before and after angioplasty. Am J Cardiol 1987;59:3844.

    Article  Google Scholar 

  25. Sans ML, Mancini GBJ, Lefree MT. Variability of quantitative digital subtraction coronary angiography before en after percutaneous transluminal coronary angioplasty. Am J Cardiol 1987;60:55–60.

    Article  Google Scholar 

  26. Katritsis D, Lythall DA, Anderson MH, Looper IC, Webb-Peploe MM. Assessment of coronary angioplasty by an automated digital angiographic method. Am Heart J 1988; 116:1181–1187.

    Article  PubMed  CAS  Google Scholar 

  27. von Birgelen C, Kutryk MJ, Gil R, Ozaki Y, Di Mario C, Roelandt JR, De Feyter Serruys PW. Quantification of the minimal luminal cross-sectional area after coronary stenting by two- and three-dimensional intravascular ultrasound versus edge detection and videodensitometry. Am J Cardiol 1996;78:520–525.

    Article  Google Scholar 

  28. Gurley JC, Nissen SE, Booth DC, DeMaria AN. Influence of operator- and patientdependent variables on suitability of automated quantitative coronary arteriogaphy for routine clinical use. J Am Coll Cardiol 1992;19:1237–1243.

    Article  PubMed  CAS  Google Scholar 

  29. Kalbfleisch SJ, McGillem MJ, Simon SB, DeBoe SF, Pinto IMF, Mancini GBJ. Automated quantitation of indexes of coronary lesion complexity. Comparison between patients with stable and unstable angina. Circulation 1990;82:439–447.

    Article  PubMed  CAS  Google Scholar 

  30. Vanoverschelde JL, Wijns W, Depre C, Essamri B, Heyndrickx GR, Borgers M, Bol A, Melin JA. Mechanisms of chronic regional post-ischemic dysfunction in humans. New insights from the study of non-infarcted collateral-dependent myocardium. Circulation 1993;87:1513–1523.

    Article  PubMed  CAS  Google Scholar 

  31. Gould KL, Lipscomb K, Hamilton GW. Physiological basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve Am J Cardiol 1974;33:87–94.

    Article  PubMed  CAS  Google Scholar 

  32. Rensing BJ, Hermans WR, Deckers JW, De Feyter PJ, Serruys PW. Which angiographic variable best describes functional status 6 months after successful single-vessel coronary balloon angioplasty ? J Am Col Cardiol 1993;21:317–324.

    Article  CAS  Google Scholar 

  33. Roelandt JRTC, Di Mario C, Pandian NG, Wenguang L, Keane D, Slager CJ, de Feyter PJ, Serruys PW. Three dimensional reconstruction of intracoronary ultrasound images. Rationale, approaches, problems, and directions. Circulation 1994;90:1044–1055.

    Article  PubMed  CAS  Google Scholar 

  34. Prati F, Di Mario C, Gil R, von Birgelen C, Camenzind E, Montauban-Van Swijndregt WJ, De Feyter PI, Serruys PW, Roelandt JRTC Usefulness of on-line three dimensional reconstruction of intraventricular ultrasound for guidance of stent deployment. Am J Cardiol 1996;77:455–461.

    Article  PubMed  CAS  Google Scholar 

  35. Di Mario C. Intracoronary ultrasound. Introduction to catheter-based intracoronary diagnostic techniques; in Intracoronary Ultrasound 1993, Thesis, ICG Printing, Dordrecht, pp3–30.

    Google Scholar 

  36. Mc Pherson DD, Hiratzka LF, Lamberth WC, Brandt B, Hunt M, Kieso RA, Marcus ML, Kerber RE. Delineation of the extent of coronary atherosclerosis by high frequency epicardial echocardiography. New Engl J Med 1987;316:304–309.

    Article  CAS  Google Scholar 

  37. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. New Engl J Med 1987; 316:1371–1375.

    Article  PubMed  CAS  Google Scholar 

  38. Stiel GM, Stiel LSG, Schofer MAJ, Donath K, Mathey DG. Impact of compensatory enlargement of atherosclerotic coronary arteries on angiographic assessment of coronary artery disease. Circulation 1989;80:1603–1609.

    Article  PubMed  CAS  Google Scholar 

  39. Mc Pherson DD, Sima SJ, Hiratzka LF, Thorpe L, Armstrong ML, Marcus ML, Kerber RE. Coronary artery remodeling studies by high frequency epicardial echocardiography: An early compensatory mechanisms in patients with obstructive coronary atherosclerosis. J Am Coll Cardiol 1991;17:79–86.

    Article  CAS  Google Scholar 

  40. Losordo DW, Rosenfield K, Kaufmann J, Pieczek A, Isner JM. Focal compensatory enlargement of human arteries in response to progressive atherosclerosis. In vivo documentation using intravascular ultrasound. Circulation 1994;89:2570–2577.

    Article  PubMed  CAS  Google Scholar 

  41. Hermiller JB, Tenaglia AN, Kisslo KB, Phillips HR, Bashore TM, Stack RS, Davidson GJ. In vivo validation of compensatory enlargement of atherosclerotic coronary arteries. Am J Cardiol 1993;71:665–668.

    Article  PubMed  CAS  Google Scholar 

  42. Nissen SE, Gurley JC, Grines CL, Booth DC, McClure R, Berk M, Fischer C, De Maria AN. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation 1991;84:1087–1099.

    Article  PubMed  CAS  Google Scholar 

  43. Alfonso F, Macaya C, Goicolea J, Inniguez 1, Hernandez R, Zamarano J, Perez-Viscaine MJ, Zarco P. Intraventricular ultrasound imaging of angiographically normal coronary segments in patients with coronary artery disease. Am Heart J 1994;127:536–544.

    Article  PubMed  CAS  Google Scholar 

  44. Gerber TC, Erbel R, Gorge G, Ge J, Rupprecht HJ, Meyer J. Extent of atherosclerosis and remodeling of the left main coronary artery determined by intravascular ultrasound. Am J Cardiol 1994;73:666–671.

    Article  PubMed  CAS  Google Scholar 

  45. Tuzcu EM, Hobbs RE, Rincon G, Bott-Silverman C, Defranco AC, Robinson K, McCarthy PM, Stewart RW, Guyer S, Nissen SE. Occult and frequent transmission of atherosclerotic coronary artery disease with cardiac transplantation. Insights from intravascular ultrasound. Circulation 1995;91:1706–1713.

    Article  PubMed  CAS  Google Scholar 

  46. Mintz GS, Painter JA, Pichard AD, Kent KM, Satler LF, Popma JJ, Chuang YC, Bucher TA, Sokolowicz LE, Leon MB. Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol 1995;25:1479–1485.

    Article  PubMed  CAS  Google Scholar 

  47. Fuster V. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 1994;90:2127–2146.

    Article  Google Scholar 

  48. Davies MJ, Thomas AC. Plaque fissuring: the cause of acute myocardial infarction, sudden ischemic death and crescendo angina. Br Heart J 1985;53:363–373.

    Article  PubMed  CAS  Google Scholar 

  49. Falk E. Unstable angina with fatal outcome:dynamic coronary thrombosis leading to infarction and/or sudden death; autopsy evidence of recurrent mural thrombus with peripheral embolization culminating in total vascular occlusion. Circulation 1985; 71:699–708.

    Article  PubMed  CAS  Google Scholar 

  50. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. New Engl J Med 1992;326:242–250.

    Article  PubMed  CAS  Google Scholar 

  51. Libby P. Lesion versus lumen. Nature Med 1995;1:17–18.

    Article  PubMed  Google Scholar 

  52. Little WC, Constantinescu M, Appelgate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease ? Circulation 1988;78:1157–1166.

    Article  PubMed  CAS  Google Scholar 

  53. McHodgson JB, Reddy KG, Suneja R, Nair RN, Lesnefsky EJ, Sheehan HM. Intra coronary ultrasound imaging: correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 1993;21:35–44.

    Article  Google Scholar 

  54. de Feyter PJ, Escaned J, Di Mario C. Combined intracoronary ultrasound and angioscopic imaging in patients with unstable angina. Target lesion characteristics (abstr). Eur Heart J 1993;14:25.

    Google Scholar 

  55. Tenaglia AN, Buller CE, Kisslo KB, Stack RS, Davidson CJ. Mechanisms of balloon angioplasty and directional coronary atherectomy as assessed by intracoronary ultrasound. J Am Coll Cardiol 1992;20:685–691.

    Article  PubMed  CAS  Google Scholar 

  56. The SHK, Gussenhoven EJ, Zhong Y, Li W, van Egmond F, Pieterman H, van Urk H, Gerritsen P, Borst C, Wilson RA, Born N. Effect of balloon angioplasty on femoral artery evaluated with intravascular ultrasound imaging. Circulation 1992;86:483–493.

    Article  PubMed  CAS  Google Scholar 

  57. Losordo DW, Rosenfield K, Pieczek A, Baker K, Harding M, Isner JM. How does angioplasty work? Serial analysis of human iliac arteries using intravascular ultrasound. Circulation 1992;86:1845–1858.

    Article  PubMed  CAS  Google Scholar 

  58. Waller BF, Orr CM, Pinkerton CA, van Tassel J, Peters T, Slack JD. Coronary balloon angioplasty dissections: “the Good, the Bad and the Ugly”. J Am Coll Cardiol 1992; 20:701–706.

    Article  PubMed  CAS  Google Scholar 

  59. Yock PG, Fitzgerald PJ, Linker DT, Angelsen BAJ. Intravascular ultrasound guidance for catheter based coronary interventions. J Am Coll Cardiol 1991;6:39B-45B.

    Article  Google Scholar 

  60. Violaris AG, Linnemeier TJ, Campbell S, Rothbaum DA, Cumberland DC. Intravascular ultrasound imaging combined with coronary angioplasty. Lancet 1992; 339:1571–1572.

    Article  PubMed  CAS  Google Scholar 

  61. Kearney P, Erbel R, Ge J, et al Mechanisms of angioplasty analyzed by coronary ultrasound before and after intervention. Eur Heart J 1993;14:327.

    Google Scholar 

  62. Lee RT, Loree HM, Cheng GC, Lieberman EJ, Jaramillo N, Schoen FJ. Computational structural analysis based on intravascular ultrasound imaging before in vitro angioplasty: prediction of plaque fracture locations. J Am Coll Cardiol 1993;21:777–782.

    Article  PubMed  CAS  Google Scholar 

  63. Mintz GS, Pichard AD, Kent KM, Satler LF, Popma JJ, Leon MB. Axial plaque redistribution as a mechanism of percutaneous transluminal coronary angioplasty. Am J Cardiol 1996;77:427–430.

    Article  PubMed  CAS  Google Scholar 

  64. Mintz GS, Kovach JA, Javier SP, Pichard AD, Kent KM, Popma MM, Salter LF, Leon MB. Mechanims of lumen enlargement after excimer laser coronary angioplasty. An intravascular ultrasound study. Circulation 1995;92:3408–3414.

    Article  PubMed  CAS  Google Scholar 

  65. Mintz GS, Popma JJ, Hong MK, Pichard AD, Kent KM, Satler LF, Leon MB. Intravascular ultrasound to discern device-specific effects and mechanisms of restenosis. Am J Cardiol 1996;78:18–22.

    Article  PubMed  CAS  Google Scholar 

  66. Mintz GS, Popma JJ, Hong MK, Pichard AD, Kent KM, Satler LF, Leon MB. Intravascular ultrasound to discern device-specific effects and mechanisms of restenosis. Am J Cardiol 1996;78:18–22.

    Article  PubMed  CAS  Google Scholar 

  67. Slepian MJ. Application of intra luminal ultrasound imaging to vascular stenting. Int J Cardiac Imaging 1991;6:285–311.

    Article  CAS  Google Scholar 

  68. Mudra H, Klauss V, Blasini R, Kroetz M, Rieber J, Regar E, Thiesen K. Ultrasound guidance of Palmaz-Schatz intracoronary stenting with a combined ultravascular ultrasound balloon catheter. Circulation 1994;90:1252–1261.

    Article  PubMed  CAS  Google Scholar 

  69. Nakamura S, Colombo A, Gaglione A, Almagor Y, Goldberg SL, Maiello L, Finci L, Tobis JM. Intracoronary ultrasound observations during stent implantation. Circulation 1994; 89:2026–2034.

    Article  PubMed  CAS  Google Scholar 

  70. Goldberg SL, Colombo A, Nakamura S, Almagor Y, Maiello L, Tobis JM. Benefit of intracoronary ultrasound in the deployment of Palmaz-Schatz stents. J Am Coll Cardiol 1994;24:996–1003.

    Article  PubMed  CAS  Google Scholar 

  71. Colombo A, Hall P, Nakamura S, Almagor Y, Maiello L, Martini G, Gaglione A, Goldberg SL, Tobis J. Intracoronary stenting without anti coagulantia accomplished with intravascular ultrasonic guidance. Circulation 1995;91:1676–1688.

    Article  PubMed  CAS  Google Scholar 

  72. Post MJ, Borst C, Kuntz RE. The relative importance of arterial remodeling compared with intimal hyperplasia in lumen renarrowing after balloon angioplasty. A study in the normal rabbit and the hypercholesterolemic Yucatan micropig. Circulation 1994; 89:2816–2821.

    Article  PubMed  CAS  Google Scholar 

  73. Pasterkamp G, Wensing PJ, Post MJ, Hillen B, Mali WP, Borst C. Parodoxical arterial wall shrinkage may contribute to luminal narrowing of human atherosclerotic femoral arteries. Circulation 1995;91:1444–1449.

    Article  PubMed  CAS  Google Scholar 

  74. Pasterkamp G, Borst C, Post MJ, Mali WP, Wensing PJ, Gussenhoven EJ, Hillen B. Circulation 1996;93:1818–1825.

    Article  PubMed  CAS  Google Scholar 

  75. Andersen HR, Maeng M, Thorwest M, Falk E. Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury: insights from a porcine coronary (re) stenosis model. Circulation 1996;93:1716–1724.

    Article  PubMed  CAS  Google Scholar 

  76. Kakuta T, Currier JW, Haudenschild CC, Ryan TJ, Faxon DP. Differences in compensatory vessel enlargement, not intimal formation, account for restenosis after angioplasty in the hypercholesterolemie rabbit model. Circulation 1994;89:2809–2815.

    Article  PubMed  CAS  Google Scholar 

  77. Shi Y, Pieniek M, Fard A, O’Brien J, Mannion JD, Zalewski A. Adventitial remodeling after coronary arterial injury. Circulation 1996;93:340–348.

    Article  PubMed  CAS  Google Scholar 

  78. Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Wing SC, Hong MK, Kovach JA, Leon MB. Arterial remodeling after coronary angioplasty. A serial intravascular ultrasound study. Circulation 1996;94:35–43.

    Article  PubMed  CAS  Google Scholar 

  79. Painter JA, Mintz GS, Wong SC, Popma JJ, Pichard AD, Kent KM, Satler LF, Leon MB. Serial intravascular ultrasound studies fail to show evidence of chronic Palmaz-Schatz stent recoil. Am J Cardiol 1995;75:398–400.

    Article  PubMed  CAS  Google Scholar 

  80. Hoffmann R, Mintz GS, Dussaillant GR, Popma JJ, Pichard AD, Satler LF, Kent KM, Griffin J, Leon MB. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation 1996;94:1247–1454.

    Article  PubMed  CAS  Google Scholar 

  81. Mintz GS, Pichard AD, Kovach JA, Kent KM, Satler LF, Javier SP, Popma JL, Leon MB. Impact of preintervention intravascular ultrasound imaging on transcatheter treatment strategies in coronary artery disease. Am J Cardiol 1994;73:423–430.

    Article  PubMed  CAS  Google Scholar 

  82. Nishioka T, Luo H, Eigler NL, Tabak SW, Lepor N, Forrester JS, Siegel RJ. The evolving utility of intracoronary ultrasound. Am J Cardiol 1995;75:539–541.

    Article  PubMed  CAS  Google Scholar 

  83. Alfonso F, Macaya C, Goicolea J, Hernandez R, Segovia J, Zamorano J, Zarco P. Acute coronary closure complicating intravascular ultrasound examination. Eur Heart J 1994; 15:710–712.

    PubMed  CAS  Google Scholar 

  84. Haussman D, Erbel R, Alibelli-Chemarin MJ, et al The safety of intracoronary ultrasound: a multicenter survey of 2207 examinations. Circulation 1995;91:623–630.

    Article  Google Scholar 

  85. Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 1993;328:828–832.

    Article  PubMed  CAS  Google Scholar 

  86. Skinner MP, Yan C, Mitsumori L, Hayes CE, Raines EW, Nelson JA, Ross R. Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complication in vivo. Nature Med 1995;1:69–73.

    Article  PubMed  Google Scholar 

  87. Siegel RJ, Ariani M, Fishbein MC. Histopathologic validation of angioscopy and intravascular ultrasound. Circulation 1991;84:109–117.

    Article  PubMed  CAS  Google Scholar 

  88. Sherman CT, Litvack F, Grundfest W, Lee M, Hickey A, Chaux A, Kass R, Blanche C, Matloff J, Morgenstern L, Ganz W, Swan HJC, Forrester J. Coronary angioscopy in patients with unstable angina pectoris. N Engl J Med 1986;315:913–919.

    Article  PubMed  CAS  Google Scholar 

  89. Mizuno K, Satomura K, Ambrose JA. Angioscopic evaluation of coronary artery thrombi in acute coronary syndromes. New Engl J Med 1992;326:287–291.

    Article  PubMed  CAS  Google Scholar 

  90. Mizuno K, Miyamoto A, Satomura K, Kurita A, Arai T, Sakurada M, Yanagida S, Nakamura H. Angioscopic coronary macromorphology in patients with acute coronary disorders. Lancet 1991;337:809–812.

    Article  PubMed  CAS  Google Scholar 

  91. White CJ, Ramee SR, Collins TJ, Mesa JE, Jain A. Percutaneous angioscopy of saphenous vein coronary bypass grafts. J Am Coll Cardiol 1993;21:1181–1185.

    Article  PubMed  CAS  Google Scholar 

  92. Hombach V, Hoher, M, Kochs M, Eggeling T, Schmidt H, Hopp HW, Hilger HH. Pathophysiology of unstable angina pectoris. Correlations with coronary angioscopic imaging. Eur Heart J 1988;9:40–45.

    Article  PubMed  Google Scholar 

  93. Neville FN, Yasuhara H, Watanabe BI, Canady J, Duran W, Hobson RW. Endovascular management of arterial intimal defects. An experimental comparison by arteriography, angioscopy and intravascular ultrasonography. J Vasc Surg 1991; 13:496–502.

    Article  PubMed  Google Scholar 

  94. White CJ, Ramee SR, Mesa JE, Collins TJ. Percutaneous coronary angioscopy in patients with restenosis after coronary angioplasty. J Am Coll Cardiol 1991;17:46B–49B.

    Article  Google Scholar 

  95. Teirstein PS, Schatz RA, Wong SC, Rocha-Singh KJ. Coronary stenting with angioscopic guidance. Am J Cardiol 1995;75:344–347.

    Article  PubMed  CAS  Google Scholar 

  96. De Bruyne B, Bronzwaer JGF, Heyndrickx GR, Paulus WJ. Comparative effects of ischemia and hypoxemia on left ventricular systolic and diastolic function in humans. Circulation 1993;88:861–881.

    Article  Google Scholar 

  97. Rutishauser W, Simon H, Stucky JP, Schad N, Noseda G, Wellauer J. Evaluation of roentgen cinedensitometry for flow measurement in models and in the intact circulation. Circulation 1967;36:951–963.

    Article  PubMed  CAS  Google Scholar 

  98. Rutishauser W, Bussmann WD, Noseda G, Meier W, Wellauer J. Blood flow measurement through single coronary arteries by roentgen densitometry. Part I: A comparison of flow measured by a radiologic technique applicable in the intact organism and by electromagnetic flowmeter. Am J Roentgenol 1970;109:12–20.

    Article  CAS  Google Scholar 

  99. Rutishauser W, Noseda G, Bussmann WD, Preter B. Blood flow measurement through single coronary arteries by roentgen densitometry. Part II: Right coronary artery flow in conscious man. Am J Roentgenol 1970;109:21–21.

    Article  CAS  Google Scholar 

  100. Hodgson JM, Legrand V, Bates ER, Mancini GBJ, Aueron FM, O’Neill WW, Simon SB, Beauman GJ, LeFree MT, Vogel RA. Validation in dogs of a rapid digital angiographic tecnhique to measure relative coronary blood flow during routine cardiac catheterization. Am J Cardiol 1985;55:188–193.

    Article  PubMed  CAS  Google Scholar 

  101. Cusma JT, Toggart EJ, Folts JD, Peppler WW, Hagiandreou NJ, Lee CS, Mistretta CA. Digital subtraction imaging of coronary flow reserve. Circulation 1987;75:461–472.

    Article  PubMed  CAS  Google Scholar 

  102. Van der Werf T, Heethaar RM, Stegehuis H, Meyler FL. The concept of apparent cardiac arrest as a prerequisite for coronary digital subtraction angiography. J Am Coll Cardiol 1984; 4: 239–244.

    Article  PubMed  Google Scholar 

  103. Whiting JS, Drury JK, Pfaff JM, Chang BL, Eigler NL, Meerbaum S, Corday E, Nivatpumin T, Forrester JS, Swan HJC. Digital angiographic measurement of radiographic contrast material kinetics for estimation of myocardial perfusion. Circulation 1986;73:789–798.

    Article  PubMed  CAS  Google Scholar 

  104. Nissen SE, Elion JL, Booth DC, Evans J, DeMaria AN. Value and limitations of computer analysis of digital subtraction angiography in the assessment of coronary flow reserve. Circulation 1986;73 :562–571.

    Article  PubMed  CAS  Google Scholar 

  105. De Bruyne B, Dorsaz PA, Doriot PA, Meier B, Finci L, Rutishauser W. Assessment of regional coronary flow reserve by digital angiography in patients with coronary artery disease. Int J Cardiac Imaging 1987;3:47–55.

    Article  Google Scholar 

  106. Zijlstra F, den Boer A, Reiber JHC, van Es GA, Lubsen J, Serruys PW. Assessment of immediate and long-term results of percutaneous transluminal coronary angioplasty. Circulation 1988;78:15–24.

    Article  PubMed  CAS  Google Scholar 

  107. Legrand V, Mancini GBJ, Bates E, Hodgson JM, Gross MD, Vogel RA. Comparative study of coronary flow reserve, coronary anatomy and result of radionuclide exercise test in patients with coronary artery disease. J Am Coll Cardiol 1986;8:1022–1032.

    Article  PubMed  CAS  Google Scholar 

  108. Hess OM, McGillem MJ, De Boe SF, Pinto IMF, Gallagher KP, Mancini GBJ. Determination of coronary flow reserve by parametric imaging. Circulation 1990; 82: 1438–1448.

    Article  PubMed  CAS  Google Scholar 

  109. Pijls NHJ. Maximal myocardial perfusion as a measure of the functional significance of coronary arteriogram. Kluwer Academic Publishers 1991.

    Book  Google Scholar 

  110. Pijls NHJ, Uijen GJH, Hoevelaken A, Arts T, Aengevaeren WRM, Bos HS, Fast JH, Van Leeuwen KL, Van de Werf T. Mean transmit time for the assessment of myocardial perfusion by videodensitometry. Circulation 1990:81:1331–1340.

    Article  PubMed  CAS  Google Scholar 

  111. Pijls NHJ, Aengevaeren WRM, Uijen GJH, Hoevelaken A, Pijnenburg T, van Leeuwen K, van de Werf T. The concept of maximal flow ratio of immediate evaluation of percutaneous transluminal coronary angioplasty results by videodensitometry. Circulation 1991;83:854–865.

    Article  PubMed  CAS  Google Scholar 

  112. Haude M, Gaspari G, Baumgart D, Brennecke R, Meyer J, Erbel R. Comparison of myocardial perfusion reserve before and after coronary balloon predilatation and after stent implantation in patients with post-angioplasty restenosis. Circulation 1996; 94:286–297.

    Article  PubMed  CAS  Google Scholar 

  113. Vassalli G, Gallino A, Kiowsky W, Jiang Z, Turina M, Hess OM. Reduced coronary flow reserve during exercise in cardiac transplant recipients. Circulation 1997;95:607–613.

    Article  PubMed  CAS  Google Scholar 

  114. Wilson RE, Laughlin DE, Ackell PH, Chilian WM, Holida MD, Hartley CJ, Armstrong ML, Marcus ML, White CW. Transluminal subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 1985;72:82–92.

    Article  PubMed  CAS  Google Scholar 

  115. Sibley DH, Millar HD, Hartley CJ, Whitlow PL. Subselective measurement of coronary blood flow velocity using a steerable Doppler catheter. J Am Coll Cardiol 1986; 8:1332–1340.

    Article  PubMed  CAS  Google Scholar 

  116. Wilson RF, Marcus ML, White CW. Prediction of the physiological significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation, 1987;75:723–732.

    Article  PubMed  CAS  Google Scholar 

  117. Serruys PW, Juilliere Y, Zijlstra F, Beatt KJ, de Feyter PJ, Suryapranata H, van den Brand M, Roelandt J. Coronary blood flow velocity during percutaneous transluminal coronary angioplasty as a guide for assessment of the functional result. Am J Cardiol 1988;61:253–259.

    Article  PubMed  CAS  Google Scholar 

  118. Wilson RF, Johnson MR, Marcus ML, Aylward PEG, Skorton DJ, Collins S, White CW. The effect of coronary angioplasty on coronary blood flow reserve. Circulation 1988;71:873–885.

    Article  Google Scholar 

  119. Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M, Segal J. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992;85:1899–1911.

    Article  PubMed  CAS  Google Scholar 

  120. Segal J, Kern MJ, Scott NA, King SB, Doucette JW, Heuser RR, Ofili E, Siegel R. Alterations of phasic coronary artery flow velocity in humans during percutaneous coronary angioplasty. J Am Coll Cardiol 1992;20:276–286.

    Article  PubMed  CAS  Google Scholar 

  121. Labovitz Ai, Anthonis DM, Cravens TL, Kern MJ. Validation of volumetric flow measurements by means of a Doppler-tipped coronary angioplasty guide wire. Am Heart J 1993;126:1456–1461.

    Article  PubMed  CAS  Google Scholar 

  122. Di Mario C, Roelandt JRTC, de Jaegere P, Linker DT, Oomen J, Serruys PW. Limitations of the zero-crossing detector in the analysis of intracoronary Doppler. A comparison with fast Fourier transform of basal, hyperemic and transstenotic blood flow velocity measurements in patients with coronary artery disease. Cath Cardiovasc Diagn 1992;28:56–64.

    Article  Google Scholar 

  123. Gould KL, Lipscomb K, Hamilton GW. Physiological basis for assessing critical coronary stenosis: instanteneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974;33:87–94.

    Article  PubMed  CAS  Google Scholar 

  124. Klocke FJ. Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation 1987;76:245–253.

    Article  Google Scholar 

  125. McGinn Al, White CW, Wilson RF. Interstudy variability of coronary flow reserve: influence of heart rate, arterial pressure and ventricular preload. Circulation 1990;81:1319–1330.

    Article  PubMed  CAS  Google Scholar 

  126. Rossen JD, Winniford MD. Effect of increases in heart rate and arterial pressure on coronary flow reserve in humans. J Am Coll Cardiol 1993;21:343–348.

    Article  PubMed  CAS  Google Scholar 

  127. Miller DD, Donohue TJ, Younis LT, Back RG, Aguirre FV, Wittry MD, Goodgold HM, Chaitman BR, Kern MJ. Correlation of pharmacological 99mTc-sestamibi myocardial perfusion imaging with post-stenotic coronary flow reserve in patients with angiogaphically intermediate coronary artery stenoses. Circulation 1994;89:2150–2160.

    Article  PubMed  CAS  Google Scholar 

  128. Moses JW, Shaknovich A, Kreps EM, Undemir C, Lieberman SM. Clinical follow-up of intermediate coronary lesions not hemodynamically significant by Doppler flow wire criteria (abstract). Circulation 1994;90:1–227.

    Article  Google Scholar 

  129. Kern MJ, Donohue TJ, Aguirre FV, Bach RG, Caracciolo EA, Wolford T, Mechem CJ, Flynn MS, Chaitman B. Clinical outcome of deferring angioplasty in patients with normal translesional pressure-flow velocity measurements. J Am Coll Cardiol 1995; 25:178–187.

    Article  PubMed  CAS  Google Scholar 

  130. Folts JD, Gallagher K, Rowe GG. Blood flow reductions in stenosed canine coronary arteries: vasospasm or platelet aggregration ? Circulation 1982;65:248–253.

    Article  PubMed  CAS  Google Scholar 

  131. Goto M, Flynn AE, Doucette JW, Kimura A, Hiramatsu O, Yamamoto T, Ogasawara Y, Tsujioka K, Hoffman JIE, Kaijwa F. Effect of intracoronary nitroglycerin administration on phasic pattern and transmural distribution of flow during coronary artery stenosis. Circulation 1992;85:2296–2304.

    Article  PubMed  CAS  Google Scholar 

  132. Kajiya F, Ogasawara Y, Tsujioka K. Analysis of flow characteristics in post-stenotic regions of the human coronary artery during bypass graft surgery. Circulation 1987;76:1092–1097.

    Article  PubMed  CAS  Google Scholar 

  133. Ofili EO, Labovitz AJ, Kern MJ. Coronary flow dynamics in normal and diseased arteries. Am J Cardiol 1993;71:3D-9D.

    Article  Google Scholar 

  134. Donohue TJ, Kern MJ, Aguirre FV, Bach RG, Wolford T, Bell CA. Assessing the hemodynamic significance of coronary artery stenoses: analysis of translesional pressureflow velocity relations in patients. J Am Cardiol 1993;22:449–458.

    Article  CAS  Google Scholar 

  135. Mancini GBJ, McGillem MJ, DeBoe SF, Gallagher KP. The diastolic hyperemic flow vs pressure relation: a new index of coronary stenosis severity and flow reserve. Circulation 1989;80:941–950.

    Article  PubMed  CAS  Google Scholar 

  136. Mancini GBJ, Cleary RM, DeBoe SF, Moore NB, Gallagher KP. Instanteneous hyperemic flow-vs-pressure slope index. Microsphere validation of an alternative to masures of coronary flow reserve. Circulation 1991;84:862–870.

    Article  PubMed  CAS  Google Scholar 

  137. Cleary RM, Aron D, Moore NB, De Boe SF, Mancini GBJ. Tachycardia, contractility and volume loading alter conventional indexes of coronary flow reserve, but not the instanteneous hyperemic flow-versus-pressure slope index. J Am Coll Cardiol 1992; 20:1261–1269.

    Article  PubMed  CAS  Google Scholar 

  138. Cleary RM, Moore NB, De Boe SF, Mancini GBJ. Sensitivity and reproducibility of the instantenous hyperemic flow-versus-pressure slope index compared to coronary flow reserve for the assessment of stenosis severity. Am Heart J 1993;126:57–65.

    Article  PubMed  CAS  Google Scholar 

  139. Serruys PW, Di Mario C, Meneveau N, de Jaegere P, Strikwerda S, de Feyter PJ, Emanuelsson. Intra coronary pressure and flow velocity from sensor tip guide wires. A new methodological comprehensive approach for the assessment of coronary hemmodynamics before and after interventions. Am J Cardiol 1993;71:41D–53D.

    Article  Google Scholar 

  140. Di Mario C, Krams R, Gil R, Serruys PW. Slope of the instantaneous hyperemic diastolic coronary flow velocity-pressure realtion. A new index for assessment of the physiological significance of coronary stenosis in humans. Circulation 1994; 90:1215–1224.

    Article  PubMed  Google Scholar 

  141. Donohue TJ, Kern MJ, Bach K. Examination of the effects of hemodynamic and pharmacologic interventions on coronary collateral flow in a patient during cardiac catheterization. Cath Cardiovasc Diagn 1993;28:155–161.

    Article  CAS  Google Scholar 

  142. Kern MJ, Aguirre FV, Donohue TJ, Bach RG, Caracciolo EA, Flynn MS. Coronary flow velocity monitoring after angioplasty associated with abrupt reocclusion. Am Heart J 1994;127:436–437.

    Article  PubMed  CAS  Google Scholar 

  143. Serruys PW, Di Mario C. Prognostic value of coronary flow velocity and diameter stenosis in assessing the short and long-term outcome of balloon angioplasty: The Debate Study (Doppler Endpoints Balloon Angioplasty Trial Europe). Circulation 1996;94:I–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pijls, N.H.J., De Bruyne, B. (1997). Introduction to Invasive Assessment of the Coronary Circulation. In: Coronary Pressure. Developments in Cardiovascular Medicine, vol 195. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8834-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8834-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-8836-2

  • Online ISBN: 978-94-015-8834-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics