Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 505))

Abstract

Basic aspects of the transport of momentum by organized convection are presented. Included are the relationship between the momentum flux and mean state, a formal distinction between eddy mixing and organized transport and key quantities arising from energy considerations. Integral properties provide general dynamical constraints and a framework for parameterizing the momentum transport by organized convection in global models.

A hierarchy of dynamical models is summarized. The simplest (archetypal) model, which approximates momentum flux by shear-perpendicular lines, has been validated against observations and cloud-resolving numerical models. Its simplicity is useful for parameterizing convective momentum flux, making use of a derived relationship between the organized convection and the classical entraining plume approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

references

  1. Benjamin, T. B. (1968) Gravity currents and related phenomena. J. Fluid Mech., 31, pp 209–248.

    Article  Google Scholar 

  2. Bolton, D. (1980) Application of the Miles theorem to forced linear perturbations. J. Atmos. Sci., 37, pp. 1639–1642.

    Article  Google Scholar 

  3. Browning, K.A., and Ludlam, F. H. (1962) Airflow in convective storms. Quart. J. Roy. Met. Soc., 89, pp. 117–135.

    Article  Google Scholar 

  4. Cotton, W.R., and Anthes, R.A. (1989) Storm and Cloud Dynamics. International Geophysics Series, 44, Academic Press, New York.

    Google Scholar 

  5. Dudhia, J. and Moncrieff, M.W. (1987) A numerical simulation of quasi-steady convective bands. Quart. J. Roy. Meteor. Soc., 113, pp. 929–967.

    Article  Google Scholar 

  6. Dudhia, J., Moncrieff, M.W., and So, D.W.K. (1987) The two dimensional dynamics of West African squall lines. Quart. J. Roy. Meteor. Soc., 113, pp. 121–146.

    Article  Google Scholar 

  7. Grabowski, W.W., Wu, X., and Moncrieff, M.W. (1996) Cloud resolving modeling of tropical cloud systems during Phase III of the GATE. J. Atmos. Sci., 53, pp. 36843709.

    Google Scholar 

  8. Gregory, D., Kershaw, R., and Inness, P.M. (1997) A numerical study of the parameterization of momentum transport by convection. II: Tests in single-column and general circulation models. Quart. J. Roy. Met. Soc.,113 in press.

    Google Scholar 

  9. Hamilton, R.A., and Archbold. J.W. (1945) Meteorology of Nigeria and adjacent region. Quart. J. Roy. Met. Soc., 71, pp. 231–262.

    Article  Google Scholar 

  10. Hauf, T., and Clark, T.L. (1988) Three-dimensional numerical experiments of convectively forced internal gravity waves. Quart. J. Roy. Met. Soc., 115, pp. 309–333.

    Article  Google Scholar 

  11. Held, I.M., Hemler, R.S., and Ramaswamy, V. (1993) Radiative-convectivedynamical equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, pp. 3039–3927.

    Article  Google Scholar 

  12. Houze, R.A., Jr. (1993) Cloud Dynamics. International Geophysics Series, 53, Academic Press, New York.

    Google Scholar 

  13. Krishnamurti, R., and Howard, L.N. (1983) Large-scale flow in turbulent convection: Laboratory experiments and a mathematical model. Meteor. Res., 6, pp. 143–159.

    Google Scholar 

  14. Kuo, H.L. (1963) Perturbations of plane Couette flow in stratified fluids and the origin of cloud streets. Phys. Fluids, 6, pp. 195–211.

    Article  Google Scholar 

  15. Lafore, J.-P., and Moncrieff, M. W. (1989) A numerical investigation of the organization and interaction of the convective and stratiform regions of a tropical squall line. J. Atmos. Sci., 46, pp. 521–544.

    Google Scholar 

  16. Laing, A., and Fritsch, J. M. (1993) Mesoscale convective complexes in Africa. Mon. Wea. Rev., 121, pp. 2254–2263.

    Article  Google Scholar 

  17. LeMone, M. A. (1983) Momentum flux by a line of cumulonimbus. J. Atmos. Sci., 40, pp. 1815–1834.

    Article  Google Scholar 

  18. LeMone, M.E., and Moncrieff, M.W. (1994) Momentum and mass transport by convective bands: comparisons of highly idealized dynamical models to observations. J. Atmos. Sci., 51, pp. 281–305.

    Article  Google Scholar 

  19. Liu, C.-H., and Moncrieff, M.W. (1996a) An analytical study of density currents in sheared, stratified fluids including the effects of latent heating. J. Atmos. Sci., 53, pp. 964–979.

    Article  Google Scholar 

  20. Liu, C.-H., and Moncrieff, M.W. (1996b) Mass and momentum transports by organized convection: effects of shear and buoyancy. J. Atmos. Sci., 53, pp. 3303–3312.

    Article  Google Scholar 

  21. Ludlam, F.H. (1980) Clouds and Storms. The Pennslyvania State University Press, University Park, PA and London.

    Google Scholar 

  22. Madden, R.A., and Julian, P. R. (1971) Detection of a 40–50 day oscillation of the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, pp. 702–708.

    Article  Google Scholar 

  23. Miles, J.W. (1961) On the stability of hetrogeneous shear flows. J. Fluid. Mech., 10, pp. 496–508.

    Article  Google Scholar 

  24. Moncrieff, M.W. (1981) A theory of organized steady convection and its transport properties. Quart. J. Roy. Met. Soc., 107, pp. 29–50.

    Article  Google Scholar 

  25. Moncrieff, M.W. (1989) Analytical models of narrow cold-frontal rainbands and related phenomena. J. Atmos. Sci., 46, pp. 150–162.

    Article  Google Scholar 

  26. Moncrieff, M.W. (1992) Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parameterization. Quart. J. Roy. Met. Soc., 118, pp. 819–850.

    Article  Google Scholar 

  27. Moncrieff, M.W. (1995) Mesoscale convection from a large-scale perspective. Atmos. Res., 35, pp. 87–112.

    Article  Google Scholar 

  28. Moncrieff, M.W., and Green, J.S.A. (1972) The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Met. Soc., 98, pp. 336–352.

    Article  Google Scholar 

  29. Moncrieff, M.W., and Klinker, E. (1997) Large mesoscale cloud systems in the tropical western Pacific as a process in General Circulation Models. Quart. J. Roy. Met. Soc.,123 in press, April.

    Google Scholar 

  30. Moncrieff, M.W., and Miller, M.J. (1976) The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, pp. 373–394.

    Article  Google Scholar 

  31. Moncrieff, M.W., and So, D.W.K. (1989) A hydrodynamical theory of conservative bounded density currents. J. Fluid Mech., 198, pp. 177–197.

    Article  Google Scholar 

  32. Moncrieff, M.W., Krueger, S.K., Gregory, D., Redelsperger, J.-L., and Tao, W: K. (1997) GEWEX Cloud System Study Working Group 4: Precipitating Convective Cloud Systems. Bull. Amer. Met. Soc.,78 in press, May.

    Google Scholar 

  33. Newton, C.W. (1966) Circulations in large sheared cumulonimbus. Tellus, 18, pp. 699–712.

    Article  Google Scholar 

  34. Redelsperger, J.-L., and Lafore, J.-P. (1988) A three-dimensional simulation of a tropical squall line: convective organization and thermodynamic vertical transport. J. Atmos. Sci., 45, pp. 1334–1356.

    Article  Google Scholar 

  35. Rotunno, R., Klemp, J.B., and Weisman, M.E. (1988) A theory of long-lived squall lines. J. Atmos. Sci., 45, pp. 463–485.

    Google Scholar 

  36. Schneider, E.K., and Lindzen, R.S. (1976) A discussion of the parameterization of momentum exchange by cumulus convection. J. Geophys. Res., 81, pp. 3158–3160.

    Article  Google Scholar 

  37. Tao, W.-K., and Simpson, J. (1989) A further study of cumulus interactions and mergers: Three-dimensional simulations with trajectory analyses. J. Atmos. Sci., 46, pp. 2974–3004.

    Article  Google Scholar 

  38. Tao, W.-K., and Soong, S.T. (1986) A study of the response of deep tropical clouds to mesoscale processes: three-dimensional numerical experiments. J. Atmos. Sci., 43, pp. 2653–2678.

    Article  Google Scholar 

  39. Thorpe, A. J., Miller, M.J., and Moncrieff, M.W. (1982) Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines. Quart. J. Roy. Meteor. Soc., 108, pp. 739–762.

    Article  Google Scholar 

  40. Tiedtke, M. (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, pp. 1779–1800.

    Article  Google Scholar 

  41. Wu, X., and Moncrieff, M.W. (1996) Collective effects of organized convection and their approximation in general circulation models. J. Atmos. Sci., 53, pp. 1477–1495.

    Article  Google Scholar 

  42. Wu, X., and Yanai, M. (1994) Effects of vertical wind shear on the cumulus transport of momentum: observations and parameterization. J. Atmos. Sci., 51, pp. 147–1495.

    Google Scholar 

  43. Xu. Q., and Moncrieff, M.W. (1994) Density current circulations in shear flows. J. Atmos. Sci., 51, pp. 434–446.

    Article  Google Scholar 

  44. Xu, Q., and Chang, C. P. (1987) On the two-dimensional steady upshear-sloping convection. Quart. J. Roy. Meteor. Soc., 113, pp. 1065–1088.

    Article  Google Scholar 

  45. Yano, J.-I. and Emanuel, K.A. (1991) An improved model of the equatorial troposphere and its coupling with the stratosphere. J. Atmos. Sci.,48 pp. 377–389.

    Google Scholar 

  46. Zipser, E.J. (1969) The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, pp. 799814.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moncrieff, M.W. (1997). Momentum Transport by Organized Convection. In: Smith, R.K. (eds) The Physics and Parameterization of Moist Atmospheric Convection. NATO ASI Series, vol 505. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8828-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8828-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4960-5

  • Online ISBN: 978-94-015-8828-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics