Skip to main content

Discrete Dry Convective Entities: II Thermals And Deflected Jets

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 505))

Abstract

In the previous chapter we have given a brief review of work on:

  1. (i)

    turbulent plumes generated from steadily maintained sources of buoyancy, possibly with momentum, in homogeneous or stably stratified environments

  2. (ii)

    turbulent thermals and puffs generated from `instantaneous’ sources of buoyancy and momentum, respectively, in a homogeneous environment;

  3. (iii)

    neutral or buoyant spheroidal vortices, possibly turbulent in part, generated in stable environments by the rapid impulsive discharge of neutral or buoyant fluid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreopoulos, J. and Rodi, W., (1984): Experimental investigation of jets in a cross-flow, J Fluid Mech, 138, 93–127.

    Article  Google Scholar 

  • Baker, C.J., (1979): The laminar horseshoe vortex, J Fluid Mech, 95, 347–367.

    Article  Google Scholar 

  • Baker, C.J., (1980): The turbulent horseshoe vortex, J Wind Engin. Indust. Aerodyn., 6, 9–23.

    Article  Google Scholar 

  • Bradshaw, P., (1983): Complex three-dimensional turbulent flows, Mech. Engin. Trans., Inst. Engin. Austr.,MES 192–199.

    Google Scholar 

  • Burgess, D.W., and R.A. Brown, (1973): The structure of a severe right-moving thunderstorm: New single Doppler radar evidence. Preprints Eighth Conf. Severe Local Storms, Denver, Colo., Amer. Meteor. Soc., 40–43.

    Google Scholar 

  • Cresswell, R.W., Morton B.R., Nguyen, K.0 and Baines, D.G. (1992): Thermals, puffs and mass sources: III–Laboratory studies, Proc. 11th Australasian Fluid Mech, Conf, Hobart, paper SC3, 2, 1149–1152.

    Google Scholar 

  • Deardorff; J.W., (1980): Stratocumulus-capped mixed layers derived from a three-dimensional model, Boundary-Layer Meteor, 18, 495–527.

    Article  Google Scholar 

  • Donaldson, R.J., (1973): Doppler radar evidence for anticyclonic rotation in a severe local storm. Preprints Eighth Conf. Severe Local Storms, Denver, Colo., Amer. Meteor. Soc., 48–51.

    Google Scholar 

  • Fric, T.F. and Roshko, A., (1991): Structure in the near field of the transverse jet, Turbulent shear flows, 7, 225–237, Springer-Verlag, Berlin.

    Google Scholar 

  • Fric, T.F. and Roshko, A., (1994): Vortical structure in the wake of a transverse jet, J Fluid Mech, 279, 1–47.

    Article  Google Scholar 

  • Fohl, T. and Turner, J.S., (1975): Colliding vortex rings, Phys. Fluids, 18, 433–436. Gresho, P.M. and Sani, R.L., (1987): On pressure boundary conditions for the

    Google Scholar 

  • incompressible Navier-Stokes equations, Int. J. Num. Meth. Fluids,7 1111–1145. Gresho, P.M., (1991): Incompressible fluid dynamics: some fundamental formulation

    Google Scholar 

  • issues, Ann. Rev. Fluid Mech.,23 413–453.

    Google Scholar 

  • Harlow, F.H. and Welch, J.E. (1965): Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 2182–2189.

    Article  Google Scholar 

  • Kelso, R.M., Lim, T.T. and Perry, A.E., (1996): An experimental study of round jets in cross-flow, J Fluid Mech, 306, 111–144.

    Article  Google Scholar 

  • Klemp, J.B. and R.B. Wilhelmson, (1978): Simulations of right-and left-splitting

    Google Scholar 

  • storms produced through storm splitting. J. Atmos. Sci.,35 1097–1110.

    Google Scholar 

  • Launder, B.E. and Spalding, D.B., (1974): The numerical computation of turbulent

    Google Scholar 

  • flows, Comp. Meth. Appl. Mech and Eng., 3,269.

    Google Scholar 

  • Maxworthy, T., (1972): The structure and stability of vortex rings, J. Fluid. Mech., 51, 15–32.

    Article  Google Scholar 

  • Morton, B.R., (1984): The generation and decay of vorticity, Geophys. Astrophys. Fluid Dyn., 28, 277–308.

    Article  Google Scholar 

  • Morton, B.R. and Ibbetson, A., (1996): Jets deflected in a cross-flow, Exp. Thermal Fluid Sci., 12, 112–133.

    Article  Google Scholar 

  • Morton, B.R., Nguyen, K.C. and Cresswell, R.W., (1994): Similarity and self-similarity in the motion of thermals and puffs, Recent research advances in the fluid mechanics of turbulent jets and plumes, Ed. Davis, P.A. and Valente Neves, M.J., Kluwer Academic Publishers, Boston, 89–116.

    Google Scholar 

  • Ng, K.H. and Spalding, D.B., (1972): Turbulence model for boundary layers near walls, Phys. Fluids, 15, 20–30.

    Article  Google Scholar 

  • Nguyen, K.C., (1994): A numerical study of line thermals and line puffs, PhD thesis, Monash University, Melbourne.

    Google Scholar 

  • Piacsek, S.A. and Williams, G.P., (1970): Conservation properties of convection difference schemes, J. Comp. Phys., 6, 392–405.

    Article  Google Scholar 

  • Reynolds, 0., (1876): On the resistance encountered by vortex rings, Nature Lond, 14, 477.

    Google Scholar 

  • Richards, J.M., (1963): Experiments on the motion of isolated cylindrical thermals through unstratified surroundings, Int. J. Air Water Poll., 7, 17–34.

    Google Scholar 

  • Richards, J.M., (1965): Puff motions in unstratified surroundings, J. Fluid Mech., 21, 97–106.

    Article  Google Scholar 

  • Rotunno, R., (1981): On the evolution of thunderstorm rotation. Mon. Wea. Rev., 109, 577–586.

    Article  Google Scholar 

  • Rudman, Murray, (1996): Simulation of the near field of a jet in a cross-flow, Exp. Thermal Fluid Sci., 12, 134–141.

    Article  Google Scholar 

  • Schlesinger, R.E., (1975): A three-dimensional numerical model of an isolated deep convective cloud: Preliminary results. J. Atmos. Sci., 32, 934–957.

    Article  Google Scholar 

  • Schlesinger, R.E., (1978): A three-dimensional numerical model of an isolated thunderstorm: Part I, comparative experiments for variable ambient wind shear. J. Atmos. Sci., 35, 690–713.

    Article  Google Scholar 

  • Scorer, R.S., (1957): Experiments on convection of isolated masses of buoyant fluid, J. Fluid. Mech., 2, 583–594.

    Article  Google Scholar 

  • Shih, T.M. and Tan, C.H., (1989): Effects of grid staggering on numerical schemes, Int. J. Num. Meth. Fluids, 9, 193–212.

    Article  Google Scholar 

  • Simpson, J., Van Helvoirt, G. and McCumber, M.C., (1982): Three-dimensional simulation of cumulus congestus clouds on GATE day 261; J. Atmos. Sci., 38, 126145.

    Google Scholar 

  • Simpson, J., Morton, B.R., McCumber, M. C and Penc, R.S., (1986): Observations and mechanisms of GATE waterspouts, J. Atmos. Sci., 43, 753–782.

    Article  Google Scholar 

  • Simpson, J., Roff, G.R:, Morton, B.R., Labas, K., Dietachmayer, G., McCumber, M.C. and Penc, R.S., (1991): A Great Salt Lake waterspout, Math. Weath. Rev., 119, 2741–2770.

    Google Scholar 

  • Tsang, G. (1971): Laboratory study of line thermals Atmos. Environ.5 445–471. Turner, J.S., (1957): Buoyant vortex rings Proc. Roy. Soc. Lond.A 239 61–75. Turner, J.S., (1986): Turbulent entrainment: the development of the entrainment

    Google Scholar 

  • assumption and its application to geophysical flows, J. Fluid Mech., 173, 431–471. Wyngaard, J.C., and Brost, R.A., (1984): Top-down and bottom-up diffusion of a

    Google Scholar 

  • scalar in the convective boundary layer J. Atmos. Sci.41 102–112.

    Google Scholar 

  • Zalesak, S.T., (1979): Fully multidimensional flux-corrected transport algorithms for fluids, J. Comp. Phys., 31, 335–362.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morton, B.R. (1997). Discrete Dry Convective Entities: II Thermals And Deflected Jets. In: Smith, R.K. (eds) The Physics and Parameterization of Moist Atmospheric Convection. NATO ASI Series, vol 505. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8828-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8828-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4960-5

  • Online ISBN: 978-94-015-8828-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics