Skip to main content

Harmonic Oscillator States in Finite Dimensional Hilbert Space

  • Chapter
Quantum Optics and the Spectroscopy of Solids

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 83))

  • 408 Accesses

Abstract

We consider various harmonic-oscillator states in a finite-dimensional Hilbert space. In greater detail we analyze finite-dimensional coherent states defined either by truncation of a number-state expansion of the standard coherent states or by the action of the generalized finite-dimensional displacement operator on vacuum. Within these two approaches other finite-dimensional states are analyzed, including displaced number states, and even and odd coherent states. We propose some new definitions of the states in a finitedimensional Hilbert space and construct explicitly all these states in Fock representation. The number-phase Wigner function is computed for several states. Analytical results and numerically computed graphs are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Weyl, Theory of Groups and Quantum Mechanics (New York: Dover, 1931).

    MATH  Google Scholar 

  2. J. Schwinger, Proc. Nat. Acad. Sci. 46, 570 (1960); reprinted in: J. Schwinger, Quantum Kinematics and Dynamics (Benjamin: New York, 1970), pp. 63–72.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. T. S. Santhanam and A. R. Tekumalla, Found. Phys. 6, 583 (1976);

    Article  ADS  Google Scholar 

  4. T. S. Santhanam, Phys. Lett. A 56, 345 (1976);

    Google Scholar 

  5. T. S. Santhanam and K. B. Sinha, Aust. J. Phys. 31, 233 (1978).

    ADS  Google Scholar 

  6. D. T. Pegg and S. M. Barnett, Europhys. Lett. 6, 483 (1988);

    Article  ADS  Google Scholar 

  7. D. T. Pegg and S. M. Barnett, Phys. Rev. A 41, 3427 (1989).

    MathSciNet  Google Scholar 

  8. W. P. Schleich and S. M. Barnett (eds), Quantum Phase and Phase Dependent Measurements, special issue of Physica Scripta, vol. T48 (1993).

    Google Scholar 

  9. R. Tanas, A. Miranowicz, and Ts. Gantsog, Progress in Opt. 35, 355 (1996).

    Article  Google Scholar 

  10. J. Krause, M. O. Scully, T. Walther, and H. Walther, Phys. Rev. Lett. 39, 1915 (1989);

    ADS  Google Scholar 

  11. M. Brune, S. Haroshe, V. Lefevre, J. M. Raimond, and N. Zagury, Phys. Rev. Lett. 65, 976 (1990);

    Article  ADS  Google Scholar 

  12. M. J. Holland, D. F. Walls, P. Zoller, Phys. Rev. Lett. 67, 1716 (1991).

    Article  ADS  Google Scholar 

  13. W. Leoński and R. Tanaś, Phys. Rev. A 49, R20 (1994).

    Article  ADS  Google Scholar 

  14. K. Vogel, V. M. Akulin, and W. P. Schleich, Phys. Rev. Lett. 71, 1816 (1993);

    Article  ADS  Google Scholar 

  15. B. M. Garraway, B. Sherman, H. Moya-Cessa, P. L. Knight, and G. Kurizki, Phys. Rev. A 49, 535 (1994);

    ADS  Google Scholar 

  16. J. Janszky, P. Domokos, S. Szabó, and P. Adam, Phys. Rev. A 51, 4191 (1995).

    Article  ADS  Google Scholar 

  17. W. Leoński, Acta Phys. Slov. 45, 383 (1995).

    Google Scholar 

  18. M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys. Rep. 106, 121 (1984);

    Article  MathSciNet  ADS  Google Scholar 

  19. V. I. Tatarskii, Soy. Phys. Usp. 26, 311 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  20. W. K. Wootters, Ann. Phys. 176, 1 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  21. O. Cohendet, Ph. Combe, M. Sirugue, and M. Sirugue-Collin, J. Phys. A 21, 2875 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. U. Leonhardt, Phys. Rev. Lett. 74, 4101 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. J. A. Vaccaro, and D. T. Pegg, Phys. Rev. A 41, 5156 (1990).

    Article  ADS  Google Scholar 

  24. T. Opatrný, A. Miranowicz, and J. Bajer, J. Mod. Opt. 43, 417 (1996).

    Article  ADS  MATH  Google Scholar 

  25. J. R. Klauder and B. S. Skagerstam (eds), Coherent states: Applications in Physics and Mathematical Physics (Singapore: World Scientific, 1985);

    MATH  Google Scholar 

  26. A. M. Perelomov, Generalized Coherent States and their Applications (Berlin: Springer Verlag, 1986).

    Google Scholar 

  27. I. A. Malkin and V. I. Man’ko, Dynamical Symmetries and Coherent States of Quantum Systems (Moscow: Nauka, 1979).

    Google Scholar 

  28. C. Arecchi, E. Courtens, R. Gilmore and H. Thomas, Phys. Rev. A 6, 2211 (1972);

    Article  ADS  Google Scholar 

  29. W. M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys. 62, 867 (1990);

    Article  MathSciNet  ADS  Google Scholar 

  30. T. S. Santhanam, Generalized coherent states, in: B. Gruber and S. Millmann (eds), Symmetries in Science (Plenum: New York, 1980), p. 337.

    Google Scholar 

  31. J. Peřina, Z. Hradil, and B. Jurčo, Quantum Optics and Fundamentals of Physics, vol. 63 of Fundamental Theories in Physics (Dordrecht: Kluwer Acad., 1994).

    Google Scholar 

  32. R. J. Glauber, Phys. Rev. 131, 2766 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  33. V. Bužek, A. D Wilson-Gordon, P. L. Knight, and W. K. Lai, 1992, Phys. Rev. A 45, 8079 (1992).

    Article  ADS  Google Scholar 

  34. A. Miranowicz, K. Piątek, and R. lanaś, Phys. Rev. A 50, 3423 (1994).

    Article  ADS  Google Scholar 

  35. G. Gangopadhyay, J. Mod. Opt. 41, 525 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. L. M. Kuang, F. B. Wang and Y. G. Zhou, Phys. Lett. A 183, 1 (1993);

    Article  MathSciNet  Google Scholar 

  37. L. M. Kuang, F. B. Wang and Y. G. Zhou, J. Mod. Opt. 41, 1307 (1994).

    Article  ADS  Google Scholar 

  38. J. Y. Zhu, and L. M. Kuang, Phys. Lett. A 193, 227 (1994);

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Y. Zhu, and L. M. Kuang, Chinese Phys. Lett. A 11, 424 (1994).

    Article  ADS  Google Scholar 

  40. L. M. Kuang, and X. Chen, Phys. Rev. A 50, 4228 (1994);

    ADS  Google Scholar 

  41. L. M. Kuang, and X. Chen, Phys. Lett. A 186, 8 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  42. F. A. M. de Oliveira, M. S. Kim, P. L. Knight, and V. Bužek, Phys. Rev. A 41, 2645 (1990).

    Article  ADS  Google Scholar 

  43. V. Bužek, and P. L. Knight, Progress in Opt. 34, 1 (1995).

    Article  Google Scholar 

  44. A. Miranowicz, R. Tanaś, and S. Kielich, Quantum Opt. 2, 253 (1990);

    Article  ADS  Google Scholar 

  45. M. Paprzycka and R. Tanaś, Quantum Opt. 4, 331 (1992).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Miranowicz, A., Opatrný, T., Bajer, J. (1997). Harmonic Oscillator States in Finite Dimensional Hilbert Space. In: Hakioğlu, T., Shumovsky, A.S. (eds) Quantum Optics and the Spectroscopy of Solids. Fundamental Theories of Physics, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8796-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8796-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4797-7

  • Online ISBN: 978-94-015-8796-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics