Skip to main content

Integration of Remote Sensing and GIS for Hydrologic Studies

  • Chapter
Book cover Geographical Information Systems in Hydrology

Part of the book series: Water Science and Technology Library ((WSTL,volume 26))

  • 606 Accesses

Abstract

Recently, the importance of integration of remote sensing and geographic information system (GIS) to study hydrologic processes has been realized by water-resources workers. However, the interface between remotely sensed data and GIS is still weak and many problems must be solved before it becomes widely available. In the meantime, the public use of satellite data to manage water resources is still in its infancy, and more application techniques are urgently in need of development. Thus this chapter is separated into two major parts. The first part is to introduce general information about remote sensing systems, GIS, and the global positioning system (GPS). The second part is to exemplify successful applications of the integration of remote sensing and GIS in hydrologic studies such as land use/land cover classification, precipitation, soil moisture, evapotranspiration, water extent, groundwater, water quality, and runoff.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allord, G. J., and F. L. Scarpace. (1981) ‘Improving streamflow estimates through use of Landsat.’ In Satellite Hydrology, M. Deutsch, D. R. Wiesnet, A. Rango, eds., Am. Water Resour. Assoc., pp. 284–291.

    Google Scholar 

  • August, P., J. Michaud, C. Labash, and C. Smith. (1994). ‘GPS for environmental applications: actimate soil-water content in pasture areas:.curacy and precision of locational data.’ Photogram. Engrg. Remote Sens., 60 (1): 41–45.

    Google Scholar 

  • Barker, G. R. (1988). ‘Remote sensing: the unheraled component of geographic information systems.’ Photogram. Engrg. Remote Sens., 54: 195–199.

    Google Scholar 

  • Barrett, E. C., and D. W. Martin. (1981). The Use of Satellite Data in Rainfall Monitoring. Academic Press, London, 340 pp.

    Google Scholar 

  • Bench, R. H., and M. B. Smith. (1985). ‘Landsat and micro-GIS for watershed modeling.’ Hydraul- ics and Hydrology in the Small Computer Age, Am. Soc. Civil Eng. ( ASCE ), pp 668–673.

    Google Scholar 

  • Beverley, A. M., and P. G. Penton. (1989). ‘ELAS science and technology laboratory applications software.’ Report No. 183, NASA, John C. Stennis Space Center, Sci. and Technol. Lab., Mississippi.

    Google Scholar 

  • Blanchard, B. J., and R. W. Learner. (1973). ‘Spatial reflectance of water containing suspended sediment.’ In Remote Sensing and Water Resources Management, Am. Water Resour. Assoc., pp. 339–348.

    Google Scholar 

  • Bowers, S. A., and R. J. Hanks. (1965). ‘Reflection of radiant energy from soils.’ Soil Sci. 100 (2): 130–138.

    Article  Google Scholar 

  • Bury, A. S. (1989). ‘Raster to vector conversion: a methodology.’ Proc. GIS/LIS 1989, Am. Cong. Surv. Map., pp 9–11.

    Google Scholar 

  • Carroll, T. R., and K. G. Vadnais. (1980). ‘Operational airborne measurement of snow water equivalent using natural terrestrial gamma radiation.’ Proc. 48th Annual Western Snow Conf., Laramie, WY, pp. 97–106.

    Google Scholar 

  • Cheng, K. S., and S. F. Shih. (1992). ‘Rainfall area identification using GOES satellite data.’ J. Irrig. and Drain. Engrg., ASCE, 118 (1): 179–190.

    Article  Google Scholar 

  • Curran, P. J. (1985). Principles of Remote Sensing. Longman Inc., New York, NY.

    Google Scholar 

  • Doviak, R. J, (1983). ‘A survey of radar rain measurement techniques.’ J. Climate, Appl. Meteorol., 22: 832–849.

    Google Scholar 

  • Dozier, J. (1984). ‘Snow reflectance from Landsat-4 thematic mapper.’ IEEE Trans. Geosci. and Remote Sens., GE-22(3): 323–328.

    Google Scholar 

  • Engman, E. T., and R. J. Gurney. (1991). Remote Sensing in Hydrology. Chapman and Hall, London, 225 pp.

    Google Scholar 

  • ERDAS. (1991). Earth Resources Data Analysis System. Field Guide, ERDAS Inc., Atlanta, GA.

    Google Scholar 

  • Ferris, J. S., and R. G. Congalton. (1989). ‘Satellite and geographic information system estimates of Colorado River basin snowpack.’ Photogram. Engrg Remote Sens., 55 (11): 1629–1635.

    Google Scholar 

  • Gervin, J. C., and S.F. Shih. (1981). ‘Improvements in lake volume predictions using Landsat data.’ In Satellite Hydrology, M. Deutsch, D. R. Wiesnet, and A. Rango, eds., Am. Water Resour. Assoc., pp. 479–484.

    Google Scholar 

  • Gilman, C. S. (1964). ‘Rainfall’. In Handbook of Applied Hydrology, V. T. Chow ed., McGraw-Hill Book Co., pp. (9–1)-(9–68).

    Google Scholar 

  • Goodenough, D. G. (1988). ‘Thematic mapper and SPOT integration with a geographic information system.’ Photogram. Engrg. Remote Sens., 54 (2): 167–176.

    Google Scholar 

  • Griffith, C. G. (1987). ‘Comparisons of gauge and satellite rain estimates for the central United States during August 1979.’ J. Geophys., 92 (D8): 9551–9566.

    Article  Google Scholar 

  • Gurney, R. J., and P. J. Camillo. (1984). ‘Modeling daily evapotranspiration using remotely sensed data.’ J. Hydrol. 69: 305–324.

    Article  Google Scholar 

  • Hall, D. K., and J. Martinec. (1985). Remote Sensing of Ice and Snow. Chapman and Hall, London, 189 pp.

    Book  Google Scholar 

  • Haralick, R. M., S. Wang, L. G. Shapiro, and J. B. Campbell. (1985). ‘Extraction of drainage networks by using a consistent labeling technique.’ Remote Sens. Environ., 18: 163–175.

    Google Scholar 

  • Heilman, J. L., E. T. Kanemasu, J. O. Bagley, and V. P. Rasmussen. (1977). ‘Evaluating soil moisture and yield of winter wheat in the Great Plains using Landsat data.’ Remote Sens. Environ., 6: 315326.

    Google Scholar 

  • Higer, A. L., A. E. Coker, E. H. Cordes. (1974). ‘Water management models in Florida using ERTS-1 data.’ Proc. 3rd Earth Resour. Technology Satellite -1 Sym., NASA sp-351-v1, pp. 1071–1078.

    Google Scholar 

  • Idso, S. B., R. J. Reginato, D. C. Reicosky, and J. L. Hatfield. (1981). ‘Determining soil-induced plant water potential depressions in alfalfa by means of infrared thermometry.’ Agron. J., 73: 826–830.

    Article  Google Scholar 

  • Jadkowski, M. A., and M. Ehlers. (1989). ‘GIS analysis of SPOT image data.’ Proc. GIS/LIS 1989, Am. Cong. Surv. Map., pp 65–74.

    Google Scholar 

  • Jakubauskas, M. E. (1989). ‘Utilizing a geographic information system for a vegetation change detection.’ Proc. GIS/LIS 1989, Am. Cong. Surv. Map., pp 56–64.

    Google Scholar 

  • Jampoler, S. M., and B. N. Haack. (1989). ‘Use of GIS to identify land use change: Kathmandu, Nepal.’ Proc. GIS/LIS 1989, Am. Cong. Surv. Map., pp 75–84.

    Google Scholar 

  • Johnston, C. A., and J. Bonde. (1989). ‘Quantitative analysis of ecotones using geographic information system.’ Photogram. Engrg. Remote Sens., 55: 1643–1647.

    Google Scholar 

  • Jordan, J. D. and S. F. Shih. (1988a). ‘Use of remote sensing in abandoned well assessment.’ Trans. Am. Soc. Agric. Eng., 31 (5): 1416–1422.

    Google Scholar 

  • Jordan, J. D. and S. F. Shih. (1988b). ‘Ground-truthing of remotely sensed abandoned wells.’ Soil Crop Sci. Soc. Fla. Proc., 47: 88–91.

    Google Scholar 

  • Jordan, J. D. and S. F. Shih. (1990). ‘Photogrammetric estimation of artesian well flow rate.’ Soil Crop Sci. Soc. Fla. Proc., 49: 24–26.

    Google Scholar 

  • Jordan, J. D. and S. F. Shih. (1991). ‘Satellite and aerial photographic techniques for use in artesian well assessment.’ Proc. Intl. Conf. on Computer Application in Water Resources, Taipei, Taiwan, R.O.C., 2: 991–998.

    Google Scholar 

  • Jordan, J. D., and S. F Shih (1993). ‘Comparison of thermal-based soil moisture estimation techniques.’ Soil Crop Sci. Soc. Fla. Proc., 52: 83–90.

    Google Scholar 

  • Khorram, S. (1985). ‘Development of water quality models applicable throughout the entire San Francisco Bay and delta.’ Photogram. Engrg. Remote Sens., 51: 53–62.

    Google Scholar 

  • Khorram, S., G. P. Catts, J. E. Cloein, and A. W. Knight. (1987). ‘Modeling of estuarine chlorophyll a from an airborne scanner.’ IEEE Trans. Geosci. Remote Sens. GE-25: 662–669.

    Google Scholar 

  • Klazura, G. E., and D. A. Imy. (1993). ‘A description of the initial set of analysis products available from the NEXRAD WSR-88D system’. Bull. Amer. Meteorol. Soc., 74 (7): 1293–1311.

    Article  Google Scholar 

  • Kolipinstii, M. E., and A. L. Higer. (1969). ‘Inventory of hydrobiological features using automatically processed multispectral data.’ In Sym. on Remote Sens. Environ., Ann Arbor, MI, pp. 79–95.

    Google Scholar 

  • Lam, N.S.N., P. J. Grim, and F. Jones. (1987). ‘Data integration in geographic information systems: an experiment’. Proc. GIS/LIS 1987; Am. Cong. Surv. Map, pp 53–62.

    Google Scholar 

  • Lillesand, T. M., and R. W. Kiefer. (1987). Remote Sensing and Image Interpretation. 2nd ed., John Wiley and Sons, Inc., NY.

    Google Scholar 

  • Lillesand, T. M., M. D. MacKenzie, J.R.V. Castle, and J. J. Magnuson. (1989). ‘Incorporating remote sensing and GIS technology in long-term and large-scale ecological research.’ Proc. GIS/LIS 1989, Am. Cong. Surv. Map., pp 228–241.

    Google Scholar 

  • Lo, C. P. (1986). Applied Remote Sensing. Longman Inc., New York, NY.

    Google Scholar 

  • Marble, D. F, and D. J. Peuquet. (1983). ‘Geographic information systems and remote sensing.’ Manual of Remote Sensing, R. N. Colwell ed., Am. Soc. Photogram., Falls Church, VA, pp 923958.

    Google Scholar 

  • Miller, A., and J. C. Thompson. (1975). Elements of Meteorology. Charles E. Merrill Publishing Company, Columbus, Ohio, 362 pp.

    Google Scholar 

  • Myhre, B. E., and S. E Shih. (1990a). ‘Using infrared thermometry to estimate soil-water content for a sandy soil.’ Trans. Am. Soc. Agr. Eng., 33 (5): 1479–1486.

    Google Scholar 

  • Myhre, B. E., and S. F Shih. (1990b). ‘Use of geographic information system for a well monitoring program.’ Soil Crop Sci. Soc. Fla. Proc., 49: 18–20.

    Google Scholar 

  • Myhre, B. E., and S. F. Shih. (1991). ‘Using geographic information system in well permitting program.’ Soil Crop Sci. Soc. Ha. Proc., 50: 102–105.

    Google Scholar 

  • Orville, R. E., R. W. Henderson, and L. F Bosart. (1983). ‘An east coast lightning detection network.’ Bull. Am. Meteorol. Soc., 64: 1029–1037.

    Google Scholar 

  • Orville, R. E. (1991). ‘Lightning ground flash density in the contiguous United States-1989 annual summary.’ Bull. Am. Meteorol. Soc., 119: 573–577.

    Google Scholar 

  • Oslin, A. J., R. A. Westsmith, and D. S. Morgan. (1988). ‘STREAMS: a basin and soil erosion model using CADD remote sensing and GIS to facilitate watershed management.’ In Modeling Agricultural, Forest, and Rangeland Hydrol., K. L. Campbell ed., Am. Soc. Agric. Eng., pp. 470477.

    Google Scholar 

  • Pelletier, R. E. (1985). ‘Evaluating non-point pollution using remotely sensed data in soil erosion models.’ J. Soil Water Conserv., 40: 332–335.

    Google Scholar 

  • Pesnell, G. L., and Brown, R. T. (1977). ‘The major plant communities of Lake Okeechobee, Fla., and their associated inundation characteristics as determined by gradient analysis.’ South Fla. Water Manag. Dist., West Palm Beach, Ha., Technical Publication 77–1: 68 pp.

    Google Scholar 

  • Piepgrass, M. V., E. P. Kridder, and C. B. Moore. (1982). ‘Lightning and surface rainfall during Florida thunderstorms.’ J. Geophy. Res., 87 (C13), 11193–11201.

    Article  Google Scholar 

  • Price, J. C. (1982). ‘Estimation of regional scale evapotranspiration through analysis of satellite thermal-infrared data.’ IEEE Trans. Geosci. Remote Sens., GE-20(3): 287–292.

    Google Scholar 

  • Ragan, R. M., and Rogers, R. H. (1978). ‘Use of Landsat satellite remote sensing for regional environmental planning and management.’ X V Convention Pan Am. Federal Engrg. Soc., Santiago, Chile.

    Google Scholar 

  • Ragan, R. M., and T. J. Jackson. (1980). ‘Runoff synthesis using Landsat and SCS model.’ J. Hydraul. Div., ASCE, 106 (HY5): 667–678.

    Google Scholar 

  • Rango, A., A. Feldman, T. S. George, III, and R. M. Ragan. (1983). ‘Effective use of Landsat data in hydrologic models.’ Water Resour. Bull., 19: 165–174.

    Google Scholar 

  • Rector, M. R. (1982). ‘Remote sensing and water resources management: a California example.’ In Remote Sensing for Resource Manag., C. J. Johannsen and J. L. Sanders, eds., Soil Conserv. Soc. Am., pp. 255–263.

    Google Scholar 

  • Rogers, J. W., and S. E. Shih. (1990). ‘Land use classification in agricultural water usage permitting program via Landsat data.’ Applied Engrg. in Agric., 6(1):54–58. Sandholt, I. and H. S. Anderson. (1993). ’Derivation of actual evapotranspiration in the Senegalese Sahel using NOAAAVHRR data during the 1987 growing season.’ Remote Sens. Environ., 46: 164–172.

    Google Scholar 

  • Schecter, R. N. (1976). ‘Resource inventory using landsat data for area wide water quality planning.’ Proc. Sym. on Machine Processing of Remotely Sensed Data, Lab. for Applications of Remote Sens., Purdue Univ., West Lafayette, IN.

    Google Scholar 

  • Schmugge, T. J., T. J. Jackson, and H. L. McKim. (1980). ‘Survey of methods for soil moisture determination.’ Water Resour. Res., 16 (6): 961–979.

    Google Scholar 

  • Scofield, R. A. (1987). ‘The NESDIS operational convective precipitation estimation technique.’ Monthly Weather Review, 115: 1773–1792.

    Article  Google Scholar 

  • Shih, S. E. and J. C. Gervin. (1980). ‘Ridge regression technique applied to Landsat data investigation of water quality in Lake Okeechobee.’ Water Resour. Bull., 16 (5): 790–796.

    Google Scholar 

  • Shih, S. F. (1982a). ‘Using landsat data to estimate reservoir storage’. Proc. 8th Intl. Sym. on Machine Processing of Remotely Sensed Data. Lab. for Applications of Remote Sens., Purdue Univ., West Lafayette, IN, pp. 321–326.

    Google Scholar 

  • Shih, S.F. (1982b). ‘Use of Landsat data to improve water storage information in Conservation Area, Florida.’ In Applied Modeling in Catchment Hydrology, V. P. Singh ed., Water Resour. Publication, Littleton, CO, pp. 511–518.

    Google Scholar 

  • Shih, S. F., and E. Y. Chen. (1984). ‘On the use of GOES thermal data to study effects of land uses on diurnal temperature fluctuation’. J. Climate and Appl. Meteorol., 23 (3): 426–433.

    Article  Google Scholar 

  • Shih, S. F. (1985). ‘Comparison of ELAS classifications and density slicing Landsat data for water-surface area assessment’. In Hydrologic Applications of Space Technology (Publication No. 160), A. I. Johnson, ed., Intl. Assoc. Hydrological Sci., pp. 91–97.

    Google Scholar 

  • Shih, S. E, J. A. Doolittle, D. L. Myhre, and G. W. Schellentrager. (1986). ‘Using radar for groundwater investigation’. J. Irrig. and Drain. Engrg. ASCE, 112 (2): 110–118.

    Article  Google Scholar 

  • Shih, S. F. (1988a). ‘Using lightning for rainfall estimation in Florida’. Trans. Am. Soc. Agric. Engrg., 31 (3): 750–755.

    Google Scholar 

  • Shih, S. F. (1988b). ‘Satellite data and geographical information system for land-use classification’. J. Irrig. and Drain. Engrg., ASCE, 114 (3): 505–519.

    Article  Google Scholar 

  • Shih, S. F. (1989). ‘Geographical information system and GOES image enhancement in rainfall estimation’. Proc. GIS/LIS 1989, Am. Cong. Surv. Map., pp 468–477.

    Google Scholar 

  • Shih, S.F. (1990). ‘Satellite data and geographic information system for rainfall estimation’. J. Irrig. and Drain. Engrg., ASCE, 116 (3): 319–331.

    Article  Google Scholar 

  • Shih, S. F., D. S. Harrison, A. G. Smajstrla, and F. S. Zazueta. (1991). ‘Infrared thermometry to estimate soil-water content in pasture areas’. Soil Crop Sci. Soc. Fla. Proc., 50: 158–162.

    Google Scholar 

  • Shih, S. F. (1992). ‘Calibration parameters for radar rainfall estimation’. Soil Crop Sci. Soc. Fla. Proc., 51: 23–29.

    Google Scholar 

  • Shih, S. E, and E. T. Engman. (1992). ‘Applications of remote sensing to hydrology’. Proc. of Water forum’s 92, ASCE, pp. 535–540.

    Google Scholar 

  • Shih, S. F., and J. D. Jordan. (1992). ‘Landsat mid-infrared data and GIS in regional surface soil moisture assessment’. Water Resour. Bull., 28 (4): 713–719.

    Google Scholar 

  • Shih, S. F., and J. D. Jordan. (1993). ‘Use of Landsat thermal infrared data and GIS in soil moisture assessment’. J. Irrig. and Drain. Engrg., ASCE, 119 (5): 868–879.

    Article  Google Scholar 

  • Shih, S. F., and D. L. Myhre. (1994). ‘Ground-penetrating radar for salt-affected soil assessment’. J. Irrig. and Drain. Engrg., ASCE, 120 (2): 322–333.

    Article  Google Scholar 

  • Soer, G.J.R. (1980). ‘Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperature’. Remote Sens. Environ., 9: 27–45.

    Google Scholar 

  • Spencer, R. W., H. M. Goodman, and R. E. Wood. (1988). ‘Precipitation retrieval over land and ocean with SSM/I, Part 1: identification and characteristics of the scattering signal’. J. Atmos. Oceanic Tech., 2: 254–263.

    Google Scholar 

  • Still, D. A., and S. F. Shih. (1985). ‘Using Landsat data to classify land use for assessing the basin-wide runoff index’. Water Resour. Bull., 21: 931–940.

    Google Scholar 

  • Still, D. A., and S. F. Shih. (1991). ‘Using Landsat data and geographic information system for wetland assessment in water quality management’. Soil Crop Sci. Soc. Fla. Proc., 50: 98–102.

    Google Scholar 

  • Stuebe, M. M., and D. M. Johnston. (1990). ‘Runoff volume estimation using GIS techniques.’ Water Resour. Bull., 26 (4): 611–620.

    Google Scholar 

  • Sucksdorff, Y., and C. Ottle. (1990). ‘Applications of satellite remote sensing to estimate areal evapotranspiration over a watershed’. J. Hydrol., 121: 321–333.

    Article  Google Scholar 

  • Tan, C. H., and S. F. Shih. (1991a). ‘The Potential for application of lightning data to rainfall estimation’. Proc. Intl. Conf. on Computer Application in Water Resources, Taipei, Taiwan, R.O.C., 2: 999–1005.

    Google Scholar 

  • Tan, C. H., and S. F. Shih. (1993a). ‘Use of geographic information system to manage lightning data in Florida’. Soil Crop Sci. Soc. Fla. Proc., 52: 65–69.

    Google Scholar 

  • Tan, Y. R. and S.F. Shih. (1988). ‘A geographic information system for study of agricultural land-use changes in St. Lucie County, Florida’. Soil Crop Sci. Soc. Fla. Proc., 47: 102–105.

    Google Scholar 

  • Tan, Y. R. and S. F. Shih. (1990). ‘Current agricultural landuse for abandoned well assessment.’ Soil Crop Sci. Soc. Fla. Proc., 49: 20–24.

    Google Scholar 

  • Tan, Y. R. and S. F. Shih. (1991b). ‘Geographic Information System for differentiating unused wells’. Soil Crop Sci. Soc. Fla. Proc., 50: 110–116.

    Google Scholar 

  • Tan, Y. R., and S. F Shih. (1993b). ‘Effect of citrus canopy on the spectral characteristics of SPOT satellite images’. Soil Crop Sci. Soc. Fla. Proc., 52: 61–64.

    Google Scholar 

  • Walsh, S. J., J. W. Cooper, I. E. VonEssen, and K. R. Gallager. (1990). ‘Image enhancement of Land-sat thematic mapper data and GIS data integration for evaluation of resource characteristics’. Photogram. Engrg. Remote Sens., 56 (8): 1135–1141.

    Google Scholar 

  • Weiss, M., and E. A. Smith. (1987). ‘Precipitation discrimination from satellite infrared temperatures over the CCOPE mesonet region’. J. Climate and Appl. Meteorol., 26 (6): 687–697.

    Article  Google Scholar 

  • Wilkening III, H. A. (1989). ‘Landsat data processing and GIS for regional water resources management in Northeast Florida’. Proc. GIS/LIS 1989, Am. Cong. Surv. Map., pp 110–119.

    Google Scholar 

  • Williams, D. L., C. L. Watthall, and S. N. Groward. (1984). ‘Collection of in sites forecast canopy spectra using a helicopter: A discussion of methodology and preliminary results’. Proc. Sym. on Machine Processing of Remotely Sensed Data, Lab. for Application of Remote Sens. Purdue Univ., West Lafayette, IN, pp. 94–105.

    Google Scholar 

  • Williams, D. L. (1994). ‘Letter explaining NASA’s position on Landsat 7 program’. NASA Goddard Space Flight Center, Greenbelt, Maryland.

    Google Scholar 

  • Williams, L. E. and S. E Shih. (1989). ‘Landsat data and GIS for land use change assessment in the Florida Everglades’. Proc. GIS/LIS 1989, Am. Cong. Surv. Map., 1: 305–313.

    Google Scholar 

  • Wischmeier, W. H., and D. D. Smith. (1978). ‘Predicting rainfall erosion losses’. Agricultural Handbook No. 537, U.S. Dept. Agri. Sci. and Education Administration, Washington, DC.

    Google Scholar 

  • Xiao, Q., H. Raafat, and D. Gauthier. (1989). ‘A temporal database structure for remotely sensed image data management within GIS.’ Proc. GIS/LIS 1989, Am. Cong. Surv. Map., pp 116–122.

    Google Scholar 

  • Xin, J. N., and S. F. Shih. (1991). ‘NOAA polar-orbiting satellite APT data in lake evaporation estimation.’ J. Irrig. and Drain. Engrg., ASCE, 117 (4): 547–557.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shih, S.F. (1996). Integration of Remote Sensing and GIS for Hydrologic Studies. In: Singh, V.P., Fiorentino, M. (eds) Geographical Information Systems in Hydrology. Water Science and Technology Library, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8745-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8745-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4751-9

  • Online ISBN: 978-94-015-8745-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics