Skip to main content

Soil Microbial Biomass: Determination and Reaction to Burning and Ash Fertilization

  • Chapter
Fire in Ecosystems of Boreal Eurasia

Part of the book series: Forestry Sciences ((FOSC,volume 48))

Abstract

Soil microbes and invertebrates are essential for nutrient cycling, and microbial biomass in soil determines the rate of organic matter turnover. Although soil microbial biomass carbon constitutes only a small percentage of soil organic carbon, e.g. 1.19% in coniferous forest soil (Martikainen and Palojärvi 1990), the contribution of soil microbes to nutrient mineralization is notable. Living trees require a constant supply of mineral nutrients which are formed in the decomposition process carried out by microbes. Consequently, microbes play a major role in silviculture and timber production. In boreal coniferous forests, litter tends to accumulate on the forest floor indicating slow microbial litter decomposition. The rate of decomposition is not limited by the amount of soil organic carbon, which is present in large amounts; in fact the quality of organic matter is more important to decomposers than the quantity. A significant proportion of the soil organic carbon is recalcitrant, and microbial biomass may be limited by the forms of organic carbon present rather than by the absolute amount (Wardle 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.P.E., and K.H. Domsch. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221.

    Article  CAS  Google Scholar 

  • Austin, R.C., and D.H. Baisinger. 1955. Some effects of burning on forest soils of Western Oregon and Washington. J. For. 53, 275–280.

    Google Scholar 

  • Brookes, P.C., A. Landman, G. Pruden, and D.S. Jenkinson. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842.

    Article  CAS  Google Scholar 

  • Bååth, E. 1980. Soil fungal biomass after clear-cutting of a pine forest in Central Sweden. Soil Biol. Biochem. 12, 495–500.

    Article  Google Scholar 

  • Bååt, E., Å. Frostegård, T. Pennanen, and H. Fritze. 1995. Microbial community structure and pH response in relation to soil organic matter quality in wood-ash fertilized, clear-cut or burned coniferous forest soils. Soil Biol. Biochem. 27, 229–240.

    Article  Google Scholar 

  • Diaz-Raviña, M., A. Prieto, M.J. Acea, and T. Carballas. 1992. Fumigation-extraction method to estimate microbial biomass in heated soils. Soil Biol. Biochem. 24, 259–264.

    Article  Google Scholar 

  • Dunn, P.H., S.C. Barro, and M. Poth. 1985. Soil moisture affects survival of microorganisms in heated chaparral soil. Soil Biol. Biochem. 17, 143–148.

    Article  Google Scholar 

  • Dunn, P.H., L.F. DeBano, and G.E. Eberlein. 1979. Effects of burning on chaparral soils: II Soil microbes and nitrogen mineralization. Soil Sci. Soc. Am. J. 43, 509–514.

    Article  CAS  Google Scholar 

  • Dyrness, CT., K. Van Cleve, and J.D. Levison. 1989. The effect of wildfire on soil chemistry in four forest types in interior Alaska. Can. J. For. Res. 19, 1389–1396.

    Article  CAS  Google Scholar 

  • Eneroth, O. 1928. Bidrag till kännedomen om hyggesbränningens inverkan på marken. Svenska skogsvårdsforeningens tidskrift 26, 685–758.

    Google Scholar 

  • Fowells, H.A., and R.E. Stephenson. 1934. Effect of burning on forest soils. Soil Sci. 38, 175–181.

    Article  CAS  Google Scholar 

  • Frankland, J.C., J. Dighton, and L. Boddy. 1990. Methods for studying fungi in soil and forest litter. In: Methods in Microbiology, Vol. 22 (R. Grigorova and J.R. Norris, eds.) 343–404. Academic Press, London.

    Google Scholar 

  • Fritze, H., and E. Bååth. 1993. Microfungal species composition and fungal biomass in a coniferous forest soil polluted by alkaline deposition. Microb. Ecol. 25, 83–92.

    Article  Google Scholar 

  • Fritze, H., T. Pennanen, and J. Pietikäinen. 1993. Recovery of soil microbial biomass and activity from prescribed burning. Can. J. For. Res. 23, 1286–1290.

    Article  Google Scholar 

  • Fritze, H., A. Smolander, T. Levula, V. Kitunen, and E. Mälkönen. 1994a. Wood ash fertilization and fire treatments in a Scots pine forest stand: effects on the organic layer, microbial biomass and microbial activity. Biol. Fert. Soils. 17, 57–63.

    Article  Google Scholar 

  • Fritze, H., P. Järvinen, and R. Hiukka. 1994b. Near-infrared characteristics of forest humus are correalated with soil respiration and microbial biomass in burnt soil. Biol. Fert. Soils. 18, 80–82.

    Article  CAS  Google Scholar 

  • Grant, W.G., and A.W. West. 1986. Measurement of ergosterol, diaminopimelic acid and glucosamine in soil: evaluation as indicators of microbial biomass. J. Mic. Meth. 6, 47–53.

    Article  CAS  Google Scholar 

  • Gray, T.R.G. 1990. Methods for studying the microbial ecology of soil. In: Methods in Microbiology, Vol. 22 (R. Grigorova and J.R. Norris, eds.), 309–342. Academic Press, London.

    Google Scholar 

  • Hanssen, J.F., T.F. Thingstad, and J. Goksoyr. 1974. Evaluation of hyphal lengths and fungal biomass in soil by a membrane filter technique. Oikos 25, 102–107.

    Article  Google Scholar 

  • Heinemeyer, O., H. Insam, E.A. Kaiser, and G. Walenzik. 1989. Soil microbial biomass and respiration measurements: an automated technique on infra-red gas analysis. Plant Soil 116, 191–195.

    Article  Google Scholar 

  • Insam, H., and K. Haselwandter. 1989. Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79, 174–178.

    Article  Google Scholar 

  • Kivekäs, J. 1939. Kaskiviljelyksen vaikutus eräisiin maan ominaisuuksiin. Commun. Inst. Forest. Fenn. 27.2

    Google Scholar 

  • Kutiel, P., and Z. Naveh. 1987. The effect of fire on nutrients in a pine forest soil. Plant Soil 104, 269–274.

    Article  CAS  Google Scholar 

  • Macadam, A.M. 1987. Effects of broadcast slash burning on fuels and soil chemical properties in the sub-boreal spruce zone of central British Columbia. Can. J. For. Res. 17, 1577–1584.

    Article  Google Scholar 

  • Martikainen, P.J., and A. Palojarvi. 1990. Evaluation of the fumigation-extraction method for the determination of microbial C and N in a range of forest soils. Soil Biol. Biochem. 22, 797–802.

    Article  CAS  Google Scholar 

  • Meiklejohn, J. 1955. The effect of bush burning on the microflora of a Kenya upland soil. J. Soil Sci. 6, 111–118.

    Article  Google Scholar 

  • Olson, F.C. 1950. Quantitative estimates of filamentous algae. Trans. Am. Microsc. Soc. 69, 272–279.

    Article  Google Scholar 

  • Pietikäinen, J., and H. Fritze. 1993. Microbial biomass and activity in the humus layer following burning: Short term effects of two different fires. Can. J. For. Res. 23, 1275–1285.

    Article  Google Scholar 

  • Pietikäinen, J., and H. Fritze. 1995. Clear-cutting and prescribed burning in coniferous forest: comparison of effects on soil fungal and total microbial biomass, respiration activity and nitrification. Soil Biol. Biochem. 27, 101–109.

    Article  Google Scholar 

  • Ross, D.J. 1990. Estimation of soil microbial C by a fumigation-extraction method: influence of seasons, soils and calibration with the fumigation-incubation procedure. Soil Biol. Biochem. 22, 295–300.

    Article  Google Scholar 

  • Smith, D.W., and T.D. James. 1978. Characteristics of prescribed burns and resultant short-term environmental changes in Populus tremuloides woodland in southern Ontario. Can. J. Bot. 56, 1782–1791.

    Article  CAS  Google Scholar 

  • Socrates, G. 1980. Infrared characteristic group frequencies. John Wiley & Sons, Chichester.

    Google Scholar 

  • Sparling, G.P., C.W. Feltham, J. Reynolds, A.W. West, and P. Singleton. 1990. Estimations of soil microbial C by a fumigation-extraction method: use on soils of high organic matter content and a reassessment of the kec-factor. Soil Biol. Biochem. 22, 301–307.

    Article  Google Scholar 

  • Sparling, G.P., and A.W. West. 1988. A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled soils. Soil Biol. Biochem. 20, 337–343.

    Article  CAS  Google Scholar 

  • Sundman, V., V. Huhta, and S. Niemelä. 1978. Biological changes in northern spruce forest soil after clear-cutting. Soil Biol. Biochem. 10, 393–397.

    Article  Google Scholar 

  • Söderström, B.E. 1979. Seasonal fluctuations of active fungal biomass in horizons of a podzolized pine forest soil in Central Sweden. Soil Biol. Biochem. 11, 149–154.

    Article  Google Scholar 

  • Theodorou, C, and G.D. Bowen. 1982. Effects of a bushfire on the microbiology of a South Australian low open (dry sclerophyll) forest soil. Aust. For. Res. 12, 317–327.

    Google Scholar 

  • Tiwari, V.K., and B. Rai. 1977. Effect of soil burning on microfungi. Plant Soil 47, 693–697.

    Article  Google Scholar 

  • Tunlid, A., and D.C. White. 1992. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In: Soil Biochemistry, Vol. 7 (G. Stotzky and J.-M. Bollag, eds.), 229–262. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707.

    Article  CAS  Google Scholar 

  • Vasander, H., and T. Lindholm. 1985. Fire intensities and surface temperatures during prescribed burning. Silva Fenn. 19, 1–15.

    Google Scholar 

  • Viro, P.J. 1969. Prescribed burning in forestry. Commun. Inst. Forest. Fenn. 67.7.

    Google Scholar 

  • Viro, P.J. 1974. Effects of forest fire on soil. In: Fire and ecosystems (T.T. Kozlowski and CE. Ahlgren, eds.), 7–45. Academic Press. New York.

    Google Scholar 

  • Wardle, D.A. 1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol. Rev. 67, 321–358.

    Article  Google Scholar 

  • Weber, M.G. 1990. Forest soil respiration after cutting and burning in immature aspen ecosystems. For. Ecol. Manage. 31, 1–14.

    Article  Google Scholar 

  • West, A.W, W.D. Grant, and G.P. Sparling. 1987. Use of ergosterol, diaminopimelic acid and glucosamine contents of soils to monitor changes in microbial populations. Soil Biol. Biochem. 19, 607–612.

    Article  CAS  Google Scholar 

  • Zackrisson, O. 1977. Influence of forest fires on the North Swedish boreal forest. Oikos 29, 22–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pietikäinen, J., Fritze, H. (1996). Soil Microbial Biomass: Determination and Reaction to Burning and Ash Fertilization. In: Goldammer, J.G., Furyaev, V.V. (eds) Fire in Ecosystems of Boreal Eurasia. Forestry Sciences, vol 48. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8737-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8737-2_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4725-0

  • Online ISBN: 978-94-015-8737-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics