Skip to main content

Determination of 3-D Velocity and Vorticity Vectors in Turbulent Flows by Multi-Hotwire Anemometry

  • Chapter
Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques

Part of the book series: Series ((ERCO,volume 4))

Abstract

The flow of viscous fluids is described by the Navier-Stokes equations. These equations are non-linear. Analytical solutions exist only for some simple flows. Physical and numerical experiments are therefore indispensable tools in fluid mechanics. It is not the intention to give any kind of introduction into fluid mechanics or the theory of turbulence. Excellent treatments of these topics are found in Batchelor (1960, 1967), Monin & Yaglom (1971), Hinze (1975), Tennekes & Lumley (1992) and others. The presentation of some well known and widely used balance equations for momentum, energy and enstrophy should merely illustrate what kind of expressions one wishes to determine by velocity measurements in turbulent flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Rahman, A., Tropea, C., Slawson, P. & Strong, A. (1987). On temperature compensation in hotwire anemometry. J. Phys. E: Sci. Instrum. 20, pp. 315.

    Article  ADS  Google Scholar 

  • Antonia, R. A., Shah, D. A. & Browne, L. W. B. (1987). Spectra of velocity derivatives in a turbulent wake. Phys. Fluids 30 (11), pp. 3455.

    Article  ADS  Google Scholar 

  • Antonia, R. A., Shah, D. A. & Browne, L. W. B. (1988). Dissipation and vorticity spectra in a turbulent wake. Phys. Fluids 31, pp. 1805.

    Article  ADS  Google Scholar 

  • Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. (1987). Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Phys. Fluids 30 (8), pp. 2343.

    Article  ADS  Google Scholar 

  • Balint, J.-L. (1986). „Contribution á l’étude de la structure tourbillonnaire d’une couche limité turbulente au moyen d’une sonde a neup fils chauds mesurant le rotationnel“. PhD Thesis, University Claude Bernard-Lyon.

    Google Scholar 

  • Balint, J.-L. , Wallace, J. M. , & Vukoslaviĉevié, P. (1991). The velocity and vorticity vector fields of a turbulent boundary layer. Part 2. Statistical properties. J. Fluid Mech. 228, pp. 53.

    ADS  Google Scholar 

  • Batchelor, G. (1960). “An Introduction to Fluid Mechanics”, Cambridge Univ. Press, U.K.

    Google Scholar 

  • Batchelor, G. (1967). “The Theory of Homogeneous Turbulence”, Cambridge Univ. Press, U.K.

    Google Scholar 

  • Bearmann, P. W. (1971). Corrections for the effect of ambient temperature drift on hot-wire measurements in incompressible flow. DISA Inf. 11.

    Google Scholar 

  • Betchov, R. (1956). An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, pp. 497.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bruun, H. H. & Tropea, C. (1985). The calibration of inclined hot-wire probes. J. Phys. E: Sci. Instrum. 18, pp. 405.

    Article  ADS  Google Scholar 

  • Chew, Y. T. & Ha, S. M. (1988). The directional sensitivities of crossed and triple hot-wire probes. J. Phys. E: Sci. Instrum. 21, pp. 613.

    Article  ADS  Google Scholar 

  • Collis, D. C. & Williams, M. J. (1959). Two-dimensional convection from heated wires at low Reynolds numbers. J. Fluid Mech. 16, pp. 357.

    Article  ADS  Google Scholar 

  • Döbbeling, K. (1990). “Experimentelle und theoretische Untersuchung an stark verdrallten, turbulenten isothermen Strömungen”. PhD Thesis, TU Karlsruhe.

    Google Scholar 

  • Dracos, T., Kholmyansky, M., Kit, E. & Tsinober, A. (1989). Some experimental results on velocityvelocity gradients measurements in turbulent grid flows. Proc. of the IUTAM Symp. on Topological Fluid Mechanics, Cambridge Univ. Press.

    Google Scholar 

  • Foss, J. F. (1976). Accuracy and uncertainty of transverse vorticity measurements. Bull. of the Am. Phys. Soc. 21, pp. 1237.

    Google Scholar 

  • Foss, J. F. (1981). Advanced techniques for transverse vorticity measurements. Proc. of the 7th Biennial Symp. of Turbulence, Univ. of Missouri-Rolla.

    Google Scholar 

  • Hinze, J. O. (1975). „Turbulence“. McGraw Hill.

    Google Scholar 

  • Idelchik, I. E. (1986). „Handbook of Hydraulic Resistance“. Springer-Verlag.

    Google Scholar 

  • Jiménez, J., Wray, A. A, Saffman, P. G. & Rogallo, R. S. (1992). The structure of intense vorticity in homogeneous isotropic turbulence. CTR, Proc. of the Summer Progr. 1992.

    Google Scholar 

  • Jiménez, J. (1992). Kinematic alignment effects in turbulent flows. Phys. Fluids A 4 (4), pp. 652.

    Article  ADS  Google Scholar 

  • Jørgensen, F. E. (1971). Directional sensitivity of wire and fiber-film probes. DISA Inf. 11.

    Google Scholar 

  • Kastrinakis, E. G. & Eckelmann, H. (1983). Measurement of streamwise vorticity fluctuations in a turbulent channel flow. J. Fluid Mech. 137, pp. 165.

    Article  ADS  Google Scholar 

  • Kastrinakis, E. G., Nychas, S. G. & Eckelmann, H. (1984). Vorticity and velocity measurements in a fully developed turbulent channel flow. Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi), IUTAM.

    Google Scholar 

  • Kavence, G. & Oka, S. (1973). Correcting hot-wire readings for influence of fluid temperature variations. DISA Inf. 15.

    Google Scholar 

  • Kim, J., Moin, P. & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, pp. 133.

    Article  ADS  MATH  Google Scholar 

  • King, L. V. (1914). On the convection of heat from small cylinders in a stream of fluid. Determination of convective constants of small platinum wires with application to hot-wire anemometry. Phil. Trans. A 214, pp. 373.

    Article  ADS  Google Scholar 

  • Kit, E., Tsinober, A., Balint, J.-L., Wallace, J. M. & Levich, E. (1987). An experimental study of helicity related properties of a turbulent flow past a grid. Phys. Fluids 30 (11), pp.3323.

    Article  ADS  Google Scholar 

  • Klebanoff, P. S. (1954). Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA TN 3178.

    Google Scholar 

  • Kovasznay, L. S. G. (1954). Turbulence measurements. Physical Measurements in Gas Dynamics and Combustion (10), Princeton Univ. Press, pp. 213.

    Google Scholar 

  • Kramers, H. (1946). Heat transfer from spheres to flowing media. Physica 12, pp. 61.

    Article  ADS  Google Scholar 

  • Lasser, D. (1987). „Bernstein-Bézier-Darstellung trivariater Splines“. PhD. Thesis, TU Darmstadt.

    Google Scholar 

  • Lemonis, G., Dracos, T. & Tsinober, A. (1994). Velocity gradient depending quantities in turbulent grid flow. Proc. of the 5th European Turbulence Conference (ed. E. Benzi), Kluwer Acad. Publ.

    Google Scholar 

  • Lemonis, G. & Dracos, T. (1995). A new calibration and data reduction method for turbulence measurements by multi-hotwire probes. Exp. Fluids 18, pp. 319.

    Google Scholar 

  • Lemonis, G. (1995). “An Experimental Study of the Vector Fields of Velocity and Vorticity in Turbulent Flows”. PhD Thesis, ETH Zurich.

    Google Scholar 

  • Lomas, C. G. (1986). „Fundamentals of hot-wire anemometry“. Cambridge Univ. Press.

    Google Scholar 

  • Mi, J. & Antonia, R. A. (1994). Vorticity characteristics of the turbulent intermediate wake. Proc. of the 5th European Turbulence Conference (ed. E. Benzi), Kluwer Acad. Publ.

    Google Scholar 

  • Monin, A.S. & Yaglom, A.M. (1971). “Statistical Fluid Mechanics“, Vol. 1.2, MIT Press, Cambridge Mass., U.S.A.

    Google Scholar 

  • Müller, U. R. (1987). Comparison of turbulence measurements with single, X- and triple hot-wire probes. Berichte VDI 121, pp. 62.

    Google Scholar 

  • Ong, L. (1992). „Visualization of Turbulent Flows with Simultaneous Velocity and Vorticity Measurements“. PhD thesis. Univ. Maryland, College Park.

    Google Scholar 

  • Pailhas, G. & Cousteix, J. (1986). Method for analyzing four-hot-wire probe measurements. Rech. Aerosp. 1986–2, pp. 79.

    Google Scholar 

  • Perry, A. E. (1982). „Hot-wire anemometry“. Clarendon Press, Oxford.

    Google Scholar 

  • Piomelli, U., Balint, J.-L. & Wallace, J. M. (1989). On the validity of Taylor’s hypothesis for wallbounded turbulent flows. Phys. Fluids ,A1, pp. 609.

    ADS  Google Scholar 

  • Pompeo, L. (1992). „An experimental study of three-dimensional turbulent boundary layers“. PhD. Thesis, ETH Zurich.

    Google Scholar 

  • Rosemann, H. (1989). Einfluß der Geometrie von Mehrfach-Hitzdrahtsonden auf die Meßergebnisse in turbulenten Strömungen. DLR-FB 89–26.

    Google Scholar 

  • Samet, F. & Einav, S. (1987). A hot-wire technique for simultaneous measurement of instantaneous velocities in 3-D flows. J. Phys. E: Sci. Instrum., 20, pp.683.

    Article  ADS  Google Scholar 

  • Taylor, G. I. (1935). Statistical theory of turbulence. Proc. Roy. Soc. London, A 151, pp. 421.

    Article  ADS  MATH  Google Scholar 

  • Tennekes, H. & Lumley, J. L. (1992). „A First Course in Turbulence“. MIT Press.

    Google Scholar 

  • Townsend, A. A (1976). „The Structure of Turbulent Shear Flow“. Cambridge Univ. Press.

    MATH  Google Scholar 

  • Tsinober, A., Kit, E. & Dracos, T. (1992). Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech. 242, pp. 169.

    Article  ADS  Google Scholar 

  • Tsinober, A., Kit, E. & Dracos, T. (1993). Velocity gradients in a turbulent jet flow. Applied Scientific Research 51. Advances in Turbulence IV (ed. F.T.M. Nieuwstadt). Kluwer Acad. Publ., pp. 185.

    Google Scholar 

  • Vukoslaviĉeviĉ, P. , Wallace, J. M. & Balint, J.-L. (1991). The velocity and vorticity vector fields of a turbulent boundary layer. Part 1. Simultaneous measurement by hot-wire anemometry. J. Fluid Mech. 228, pp. 25.

    ADS  Google Scholar 

  • Wagner, T. C. & Kent, J. C. (1988). On the directional sensitivity of hot-wires: a new look at an old phenomenon. Exper. Fluids 6, pp. 553.

    Article  ADS  Google Scholar 

  • Wallace, J. M. (1986). Methods of mneasuring vorticity in turbulent flows. Exper. Fluids 4, pp. 61.

    Article  ADS  Google Scholar 

  • Wallace, J. M. & Ong, L. (1994). Local isotropy of the vorticity field in a boundary layer at high Reynolds numbers. Proc. of the 5th European Turbulence Conference (ed. E. Benzi), Kluwer Acad. Publ.

    Google Scholar 

  • Wyngaard, J. C. (1969). Spatial resolution of the vorticity meter and other hot wire arrays. J. Phys. E: Sci. Instrum. 2, pp. 983.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lemonis, G., Dracos, T. (1996). Determination of 3-D Velocity and Vorticity Vectors in Turbulent Flows by Multi-Hotwire Anemometry. In: Dracos, T. (eds) Three-Dimensional Velocity and Vorticity Measuring and Image Analysis Techniques. ERCOFTAC Series, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8727-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8727-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4757-1

  • Online ISBN: 978-94-015-8727-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics