Skip to main content

The time evolution of the electric characteristics of a laser discharge through their waveforms of the voltage and the current

  • Chapter
High Power Lasers — Science and Engineering

Part of the book series: NATO ASI Series ((ASHT,volume 7))

  • 243 Accesses

Abstract

The time behavior of the electric characteristics resistances and inductances in the discharges in pulsed gas lasers is revealed through a procedure which exploits only the voltages or the currents waveforms. This can be achieved combining step by step the waveforms with the equations governing the performance of the system. This method is described analytically in the text. Its application showed that the resistances drop rapidly (first l0nsec) from very high values to low values, while the inductances increase to high values and subsequently decrease, forming an abrupt high peak (first 40nsec). The steep drop of the resistances is due to the electron avalanche multiplication, while the peak of the inductances is due to the centripetal magnetic forces (Laplace forces), which cause a temporary constriction of the plasma. In the “main phase” of the discharge the resistances present a damping oscillation with the same frequency as the voltages, while the inductances present light fluctuations around constant values. The time varied resistances and inductances strongly influence the electrical and optical behavior of the laser system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Persephonis, V. Giannetas, C. Georgiades, J. Parthenios and A. Ioannou (1995) “The influence of the external circuit on arc-discharge of a spark-gap: Its application to a pulsed gas laser”. IEEE J. Quantum Electron. 31, 567–572

    Article  ADS  Google Scholar 

  2. P. Persephonis, V. Giannetas, C. Georgiades, J. Parthenios and A. Ioannou (1995) “The inductance and resistance of the laser discharge in a pulsed gas laser”. IEEE J Quantum Electron. 31, 573–581

    Article  ADS  Google Scholar 

  3. Edward T. Gerry (1965) “Pulsed Molecular Nitrogen Laser Theory” Appl. Phys Lett 7, 6–8

    Google Scholar 

  4. A. W. Ali., A. C. Kolb and A. D. Anderson (1967) “Theory of the Pulsed Molecular Nitrogen Laser” Appl. Opt 6, 2115–2119

    Article  ADS  Google Scholar 

  5. A. W. Ali. “A study of the Nitrogen laser power density and some design considerations” (1974) Appt. Opt 8, 993–998.

    Google Scholar 

  6. H. E. B. Anderson, S. A. Borgstrom. (1974) “Time-resolved analysis of a transvely excited nitrogen laser” Opto-electronics, 6, 225–234

    Article  Google Scholar 

  7. W. A. Fitzsimmons, L. W. Anderson, C. E. Riedhauser and Jan M. Vrtilek (1976) “Experimental and Theoretical Investigation of the Nitrogen Laser” IEEE J Quantum.Electron QE-12, 624–633

    Google Scholar 

  8. N. Spyrou, P. Leprince et H. Milleon. (1980) “Description d’ une discharge implulsionelle transverse. Application au laser N2 ” Rev. Phys. Appl. 15, 1459–1467.

    Article  Google Scholar 

  9. A. Dipace and E. Sabia, (1987) “An analytical approach to discharge circuits in Gas Lasers” Il Nuovo Cimento 9, 1477–1484.

    Article  Google Scholar 

  10. T. Letardi, S. Bollanti, A. De Angelis, P. Di Lazzaro, I. Giabbai, G. Giordano and E. Sabia (1987). “Characterization of a High–Uniformly, X-Ray Preionized XeC1 laser”. I/ Nuovo Cimento. 9, 873–891.

    Article  ADS  Google Scholar 

  11. P. Persephonis, V. Giannetas, A. Ioannou, J. Parthenios and C. Georgiades. (1995) “The time dependent resistance and inductance of the electric discharges in pulsed gas lasers.” IEEE J. Quantum Electron. 31 (10), in press.

    Google Scholar 

  12. P. Persephonis, V. Giannetas, A. loannou, J. Parthenios and C. Georgiades (1995) “Time history of the resistance and inductance in a pulsed electric discharge” Jpn. J. Appl. Phys (Part I), 34 (11), in press.

    Google Scholar 

  13. P. Persephonis, K. Vlachos, C. Georgiades, and J. Parthenios. (1992) “The inductance of the discharge in a spark-gap”. J Appl. Phys. 71 (10), 4755–4762.

    Article  ADS  Google Scholar 

  14. A.E. Siegman (1986) ’Lasers“. University Science Books, Mill Valley, California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Persephonis, P., Ioannou, A., Parthenios, J., Georgiades, C., Giannetas, V. (1996). The time evolution of the electric characteristics of a laser discharge through their waveforms of the voltage and the current. In: Kossowsky, R., Jelinek, M., Walter, R.F. (eds) High Power Lasers — Science and Engineering. NATO ASI Series, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8725-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8725-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4679-6

  • Online ISBN: 978-94-015-8725-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics