Skip to main content

Spatial and Temporal Scales of Active Medium Inhomogeneities in High Power Gas Lasers

  • Chapter
High Power Lasers — Science and Engineering

Part of the book series: NATO ASI Series ((ASHT,volume 7))

  • 244 Accesses

Abstract

High spatial coherense and small angular divergence are the main properties of laser beam wich determine the possibility of focusing on a small target or energy transmission at great distances. The performance of high-power lasers in wich large active medium volumes or flow rates are used depends to a large extent upon the medium optical homogeneity and hence upon its gasdynamic uniformity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

x,y,z,ξ,η:

coordinates

l:

geometrical path length

S:

area

v:

velosity

d:

diameter

τ:

time

ρ:

density

k:

specific heats ratio

Ne :

electron density

μ:

dynamic viscosity

G:

gas rate

α:

fuel aboundance coefficient

I:

intensity

W:

energy

k0 :

small signal gain

n:

refraction index

K:

Gladstone-Dale constant

L:

optical path length

ne :

electron gas refraction index

λ:

wave legth

φ:

phase of the light wave

D:

phase dispersion

Dφ :

structural function of phase distribution

Λ:

integral scale of the inhomogeneity

u:

wave function

A:

amplitude of the wave function

B :

transverse correlation function

γ:

coherence index

ρc :

coherence radius

Γ:

aberration factor

M:

magnification coefficient

δ:

interferention fringe displacement

e0 :

interferention fringe width

V:

contrast of the interferention pattern

ω:

spatial frequency

θ:

divergence angle

ε:

observation axis angle

St:

Strehl tatio

Re:

Reynolds number

References

  1. Eletsky, A.V., Smirnov, B.M. (1985) Physical Processes in the Gas Lasers, Moskow, Energoizdat.

    Google Scholar 

  2. Dimakov, S.A., Malakhov, L.M., Sherstobitov, V.E. (1983) Investigation of the optical homogeneity of TEA CO2 laser active medium during the beam generation, J. of Quant. Electr. 10 N2, pp. 397–401.

    ADS  Google Scholar 

  3. Borovich, B.L., Zuev, V.S., Katulin, V.A. (1983) Small scale nonuniformities appearance in the photodissotiated Jodine lasers during the beam generation, J. of Quant. Electr., 2 N5, pp. 1282–1290.

    Google Scholar 

  4. Sutton, G.W. (1969) Influence of the turbulent pulsation of the optical active medium on the light beam, RTC 7 N9, pp. 94–103.

    Google Scholar 

  5. Novoselov, A.G., Pustogarov, A.A., Sharkov, V.F. (1985) About some physical criteria of the active media supersonic flows attestation, Physical Gasdynamic, LCWP, Minsk, ITMO BSSR, pp. 134–147.

    Google Scholar 

  6. Born, M., Wolf, E. (1964), Principles of Optics, Edited by Pergamon Press, New York

    Google Scholar 

  7. Quinnell, R.D., (1981), Limitation on the Root-mean-Square (rms) Phase to Describe Beam Quality Charachteristics, SPIE 293 pp. 12–19

    Article  ADS  Google Scholar 

  8. Lobachev, V.V., Moshkov, V.L. (1993) Limitation on the multicascade laser amplifiers realization. IFJ NI, 63, pp. 83–87

    Google Scholar 

  9. Glessner, J.W., Tannen, P.D., Walter, R.F. (1990) Review of oscillator performance for electric discharge lasers. Proc. conf.SPIE., 24.

    Google Scholar 

  10. Hogge, Ch.B. (1981) Aberrations in high power laser systems. SPIE. 293, pp. 20–26.

    Article  ADS  Google Scholar 

  11. Achmanov, S.A., Dyakov, U.E., Chirkin, A.S. (1981) Introduction into statistical radiophysics and optics. Moskow Nauka.

    Google Scholar 

  12. Klyatskin, V.I. (1980) Stochastical equations and waves in the randomly in homogeneious media. Moscow; Nauka.

    Google Scholar 

  13. Kon, A.I. (1990) Qualitive linear theory of the light beam propagation in the turbulent athmosthere, Lasers and Athmosphere. Obninsk. pp. 96–99.

    Google Scholar 

  14. Ananyev, Y.A. (1979) Optical Resonators and the problem of the laser radiation divergence. Moskow; Nauka

    Google Scholar 

  15. Ananyev, Y.A. (1993) Optical Resonators and laser beams. Moskow; Nauka

    Google Scholar 

  16. Knight, C.I. Sutton, G.W., Berggen, R. (1981) Phase aberrations and laser output beam guality. SPIE. 293 pp. 2–11.

    Article  ADS  Google Scholar 

  17. Gorbachev, B.U. (1990) Investigation of the energetical characteristics and farfield energy distribution of the lasers with unstable telescopic resonator. Ph.D.thesis. Moscow Ph.I AN

    Google Scholar 

  18. Malacara, D. (1984). Optical Shop Testing. Edited by John Wiley and Sons. New York.

    Google Scholar 

  19. Shekhtman, V.N. (1982) Reconstruction of the light wavefront from the side-shearing interferogram OMP., N6. pp. 2–6.

    Google Scholar 

  20. Shekhtman, V.N., Rodionov, A.Y., Pelmenev, A.G (1994), Reconstruction of the light beam wavefront by means of shearing interferogram synthesis. Journ.of Optics and Spectr. 76, N6, pp. 884–888.

    ADS  Google Scholar 

  21. Kromin, S.M., Lubimov, B.B., Shekht man, V.N. (1986) Measurements of the light wave scattered component. J.Quant.Electr. 13. N5, pp. 962–966.

    Google Scholar 

  22. Ktalcherman, M.G., Malkov, V.M. (1993) Aerooptics of GDL No77le Banks. Journ. of Appl.Mathem. and Techn.Phys. 5.

    Google Scholar 

  23. Boreisho, A.S., Lobachev, V.V. (1989) Flow Optical Quality Formed by Screen Nozzles, J.of Appl.Math.and Techn.Phys. N4 pp. 94–98.

    Google Scholar 

  24. Rotinian,M.A. Strelets,M.Ch. Shur, M. L, (1991) Navier-Stokes simulation of the supersonic combustion in CW-chemical laser, Proc.of 7-th conf in Stanford, USA, July 8–12, 7, part. 2, pp. 1132–1148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moshkov, V.L. (1996). Spatial and Temporal Scales of Active Medium Inhomogeneities in High Power Gas Lasers. In: Kossowsky, R., Jelinek, M., Walter, R.F. (eds) High Power Lasers — Science and Engineering. NATO ASI Series, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8725-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8725-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4679-6

  • Online ISBN: 978-94-015-8725-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics