Skip to main content

Ligand Design Approaches for Controlling Exchange Coupling and Fabricating Molecular Magnetic Materials

  • Chapter
Magnetism: A Supramolecular Function

Part of the book series: NATO ASI Series ((ASIC,volume 484))

Abstract

A proposal is reviewed for using ligand design to control the sign and magnitude of the exchange-coupling constant, J, in multinuclear ions. The approach promises utility for obtaining a J of ferromagnetic sign. Its origin lies in the use of a planar array of four strongly sigma-donating ligands at a first metal ion that is bridged via two of these to a second ion [1]. Strategies are discussed for extending the local concept to complete crystals. The relationships between local site and global structural parameters are summarized for chains and helices obtained by linking D3 ions. The properties of a magnetically interesting crystalline substance consisting of stacked chains are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kahn, O. (1993) Molecular Magnetism, VCH Publishers, Inc., New York.

    Google Scholar 

  2. Gordon-Wylie, S.W., Bominaar, E.L., Collins, T.J., Workman, J.M., Claus, B.L., Patterson, R.E., Williams, S.E., Conklin, B.J., Yee, G.T. and Weintraub, S.T. (1995) Ligand Design for Securing Ferromagnetic Exchange Coupling in Multimetallic Complexes, Chem. Eur. J. 1, 528–537.

    Article  Google Scholar 

  3. Oshio, H. and Nagashima, U. (1992) Design of a Homonuclear Ferromagnetic Chain: Structures and Magnetic Properties of Oxalato-Bridged Copper(II) Complexes with One-Dimensional Structures, Inorg. Chem. 31, 3295–3301.

    Article  Google Scholar 

  4. Tamaki, H., Zhuang, Z.J., Matsumoto, N., Kida, S., Koikawa, M., Achiwa, N., Hashimoto, Y. and Okawa, H. (1992) Design of Metal-Complex Magnets. Syntheses and Magnetic Properties of Mixed Metal Assemblies {NBu4[MCr(ox)3]}x (NBu4+ = Tetra(n-butyl)ammonium ion; ox2− = oxalate ion; M = Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+), J. Am. Chem. Soc. 114, 6974–6979.

    Article  Google Scholar 

  5. Collins, T.J. (1994) Designing Ligands for Oxidizing Complexes, Acc. Chem. Res. 27, 279–285.

    Article  Google Scholar 

  6. Carlin, R.L. (1986) Magnetochemistry, Springer-Verlag, Berlin.

    Book  Google Scholar 

  7. Ginsberg, A.P. (1971) Magnetic Exchange in Transition Metal Complexes VI: Aspects of Exchange Coupling in Magnetic Cluster Complexes, Inorg. Chim. Acta. Rev. 5, 45–68.

    Article  Google Scholar 

  8. Gatteschi, D., Kahn, O., Miller, J.S. and Palacio, F. (1991) Magnetic Molecular Materials, Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  9. Willett, R.D., Gatteschi, D. and Kahn, O. (1985) Magneto-Structural Correlations in Exchange Coupled Systems, Reidel, Dordrecht.

    Google Scholar 

  10. Hay, P.J., Thibeault, J.C. and Hoffmann, R.J. (1975) Orbital Interactions in Metal Dimer Complexes, J. Am. Chem. Soc. 97, 4884–4899.

    Article  Google Scholar 

  11. Collins, T.J. and Workman, J.M. (1993) Structure of Tetraphenylphosphonium μ- {ŋ4-2,4-Bis(2-hydroxy-2-methylpropanamido)-2,4-dimethyl-3-oxopentane] -cobalt(III)}tetranitratocerium(III) • Dichloromethane, Acta Cryst. C49, 1426–1428.

    Article  Google Scholar 

  12. Collins, T.J., Powell, R.D., Slebodnick, C. and Uffelman, E.S. (1991) Stable Highly Oxidizing Cobalt Complexes of Macrocyclic Ligands, J. Am. Chem. Soc. 113, 8419–8425.

    Article  Google Scholar 

  13. Collins, T.J. and Uffelman, E.S. (1990) The First Macrocyclic Square-Planar Cobalt(III) Complex Relieves Ring Strain by Forming a Nonplanar Amide, Angew. Chem. Int. Ed. Engl. 28, 1509–1511.

    Article  Google Scholar 

  14. Brewer, J.C., Collins, T.J., Smith, M.R. and Santarsiero, B.D. (1988) Neutral Square Planar Cobalt(III) Complexes, J. Am. Chem. Soc. 110, 423–428.

    Article  Google Scholar 

  15. Collins, T.J., Richmond, T.G., Santarsiero, B.D. and Treco, B.G.R.T. (1986) Paramagnetic Cobalt(III) Complexes of PAC Ligands, J. Am. Chem. Soc. 108, 2088–2090.

    Article  Google Scholar 

  16. Anson, F.C., Collins, T.J., Richmond, T.G., Santarsiero, B.D., Toth, J.E. and Treco, B.G.R.T. (1987) Highly Stabilized Copper(III) Complexes, J. Am. Chem. Soc. 109, 2974–2979.

    Article  Google Scholar 

  17. Douglas, B.E., McDaniel, D.H. and Alexander, J.J. (1983) Concepts and Models of Inorganic Chemistry, John Wiley & Sons, Inc., New York.

    Google Scholar 

  18. Pourbaix, M. (1966) Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford.

    Google Scholar 

  19. Collins, T.J., Nichols, T.R. and Uffelman, E.S. (1991) A Square Planar Nickel(III) Complex of An Innocent Ligand System, J. Am. Chem. Soc. 113, 4708–4709.

    Article  Google Scholar 

  20. Kostka, K.L., Fox, B.G., Hendrich, M.P., Collins, T.J., Rickard, C.E.F., Wright, L.J. and Münck, E. (1993) High Valent Transition Metal Chemistry. Mössbauer and EPR Studies of High-Spin (S = 2) Iron(IV) and Intermediate-Spin (S = 3/2) Iron(III) Complexes with a Macrocyclic Tetraamido-N Ligand, J. Am. Chem. Soc. 115, 6746–6757.

    Article  Google Scholar 

  21. Workman, J.M. (1992) Routes to Multimetallic High Oxidation State Transition Metal Complexes, Ph. D., Carnegie Mellon University.

    Google Scholar 

  22. Goodenough, J. B. (1963) Magnetism and the Chemical Bond; Wiley and Sons, New York, p. 167.

    Google Scholar 

  23. Abragam, A. and Pryce, M.H.L. (1951) The Theory of Paramagnetic Resonance in Hydrated Cobalt Salts, Proc. Roy. Soc. (London) A206, 173–191.

    Article  ADS  MATH  Google Scholar 

  24. Uffelman, E.S., Bartos, M.J., Slebodnick, C. and Collins, T.J., unpublished results.

    Google Scholar 

  25. McBride, J.M. (1989) Symmetry Reduction in Solid Solutions: A New Method for Materials Design, Angew. Chem. Int. Ed. Engl. 28, 377–379.

    Article  Google Scholar 

  26. Decurtins, S., Schmalle, H.W., Schneuwly, P. and Oswald, H.R. (1993) Photochemical Synthesis and Structure of a 3-Dimensional Anionic Polymeric Network of an Iron(II) Oxalato Complex with Tris(2,2′-bipyridine)iron(II) Cations, Inorg. Chem. 32, 1888–1892.

    Article  Google Scholar 

  27. Decurtins, S., Schmalle, H.W., Schneuwly, P., Ensling, J. and Gütlich, P. (1994) A Concept for the Synthesis of 3-Dimensional Homo-and Bimetallic Oxalate-Bridged Networks [M2(ox)3]n. Structural, Mössbauer, and Magnetic Studies in the Field of Molecular-Based Magnets, J. Am. Chem. Soc. 116, 9521–9528.

    Article  Google Scholar 

  28. Ohba, M., Tamaki, H., Matsumoto, N. and Okawa, H. (1993) Oxalate-Bridged Dinuclear Cr(III)-M(II) (M = Cu, Ni, Co, Fe, Mn) Complexes: Synthesis, Structure, and Magnetism., Inorg. Chem. 32, 5385–5390.

    Article  Google Scholar 

  29. Gordon-Wylie, S.W., Claus, B.L., Horwitz, C.P., Leychkis, Y., Workman, J. M., Marzec, A.J., Rickard, C.E.F., Conklin, B.J., Sellers, S., Yee, G. T., Weintraub, S.T., Collins, T. J., manuscript in preparation.

    Google Scholar 

  30. Wolfram, S. ( 1988, 1991) Mathematica, A System For Doing Mathematics By Computer., Redwood City, CA.

    MATH  Google Scholar 

  31. Kirk, M.L., Lah, M.S., Raptopoulou, C., Kessissoglou, D.P., Hatfield, W.E. and Pecoraro, V.L. (1991) Cationic Control of Spin Dimensionality in Infinite Chains of (Cation)2[MnIII(salicylate)2(CH3OH) 2][MnIII(salicylate)2], Inorg. Chem. 30, 3900–3907.

    Article  Google Scholar 

  32. Bozorth, R.M. (1951) Ferromagnetism, D. Van Nostrand Company Inc., Princeton.

    Google Scholar 

  33. Fischer, K.H. and Hertz, J.A. (1991) Spin Glasses, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  34. Sessoli, R., Gatteschi, D., Caneschi, A. and Novak, M.A. (1993) Magnetic Bistability in a Metal Ion Cluster, Nature 365, 141–143.

    Article  ADS  Google Scholar 

  35. Sessoli, R., Tsai, H.L., Schake, A.R., Wang, S., Vincent, J.B., Folting, K., Gatteschi, D., Christou, G. and Hendrickson, D.N. (1993) High Spin Molecules: [Mn12O12(O2CR)16(H2O)4], J. Am. Chem. Soc. 115, 1804–1816.

    Article  Google Scholar 

  36. Caneschi, A., Gatteschi, D. and Sessoli, R. (1991) AC Susceptibility, High Field Magnetization, and Millimeter band EPR Evidence for a Ground S = 10 State in [Mn12O12(OAc)16(H2O)4].2HOAc.4H2O, J. Am. Chem. Soc. 113, 5874–5876.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Collins, T.J., Gordon-Wylie, S.W., Bominaar, E.L., Horwitz, C.P., Yee, G. (1996). Ligand Design Approaches for Controlling Exchange Coupling and Fabricating Molecular Magnetic Materials. In: Kahn, O. (eds) Magnetism: A Supramolecular Function. NATO ASI Series, vol 484. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8707-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8707-5_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4730-4

  • Online ISBN: 978-94-015-8707-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics