Skip to main content

FT Pulsed ESR/ESTN(Electron Spin Transient Nutation) Spectroscopy Applied to High-Spin Systems

Direct Evidence of the First High-Spin Polymer as Models for Organic Ferro-, Superpara-Magnets, and Super High-Spin Extended Systems

  • Chapter
Magnetism: A Supramolecular Function

Part of the book series: NATO ASI Series ((ASIC,volume 484))

Abstract

Organic molecular based magnetism (abbreviated to organic magnetism) [1,2] has found ever increasing interest from both the pure and applied sciences for last decade [3a–c]. The conceptual proposals of organic magnetism were made at early times [1,2]. A rapid development of this research field partly is due to the rich variety of novel physical phenomena and properties which synthetic organomagnetic materials are expected to exhibit both macro- and meso-scopically and partly due to their underlying potential applications as future technology in materials science [4,5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morimoto, S., Tanaka, F., Itoh, K., and Mataga, N., Preprints of Symposium on Molecular Structure, Chem. Soc. Japan,67(1968).

    Google Scholar 

  2. Mataga, N., Theor. Chim. Acta. 10, 372 (1968).

    Google Scholar 

  3. Itoh, K., Bussei, 12, 635 (1971).

    Google Scholar 

  4. Itoh, K., Pure Appl. Chem., 50, 1251 (1978).

    Google Scholar 

  5. Ovchinnikov, A. A., Theor. Chim. Acta., 47, 297 (1978).

    Google Scholar 

  6. Takui, T., Dr. Thesis (Osaka University, 1973).

    Google Scholar 

  7. McConnell, H. M., J. Chem. Phys., 39, 1910 (1963).

    Google Scholar 

  8. McConnell, H. M., Proc. R. A. Welch Found. Chem. Res., 11, 144 (1967).

    Google Scholar 

  9. For a recent overview, see the following references.

    Google Scholar 

  10. Miller, J. S. and Dougherty, D. A. (eds.), Mol. Cryst. Liq. Cryst.,176, 1–562(1989).

    Google Scholar 

  11. Chang, L. Y., Chaikin, P. M. and Cowan, D. O. (eds.), Advanced Organic Solid State Materials (MRS, 1990 ) p. 1–92.

    Google Scholar 

  12. Gatteschi, D., Kahn, O., Miller, J. S., and Palacio, F. (eds.), Molecular Magnetic Materials (Kluwer Academic Press, 1990 ).

    Google Scholar 

  13. Iwamura, H. and Miller, J. S. (eds.), Mol. Cryst. Liq. Cryst.,232/233, 1–724(1993).

    Google Scholar 

  14. Miller, J. S. and Epstein, A. J. (eds.), Mol. Cryst. Liq. Cryst., in press (1995).

    Google Scholar 

  15. Miller, J. S., Epstein, A. J., and Reiff, W. M., Chem. Rev.,88, 201(1988) and references therein.

    Google Scholar 

  16. Miller, J. S., Epstein, A. J., and Reiff, W. M., Acc. Chem. Res.,22, 114(1988) and references therein.

    Google Scholar 

  17. Takui, T. and Itoh, K., Polyfile, 27, 49 (1990).

    Google Scholar 

  18. Takui, T. and Itoh, K., J. Mat. Sci. Japan, 28, 315 (1991).

    Google Scholar 

  19. Takui, T., Polyfile, 29, 48 (1992).

    Google Scholar 

  20. Takui, T., Chemistry, 47, 167 (1992).

    Google Scholar 

  21. Miller, J. S. and Epstein, A. J., Chemtech., 21, 168 (1991).

    Google Scholar 

  22. Landee, C. P., Melville, D., and Miller, J. S., in Molecular Magnetic Materials, Gatteschi, D., Kahn, O., Miller, J. S., and Palacio, F., (eds.) ( Kluwer, Academic Publisher, 1991 ).

    Google Scholar 

  23. Takui, T., Teki, T., Furukawa, K., Inoue, M., Miura, Y., Inui, K., Ota, M., Otani, S., and Itoh, K., in New Functionality Materials,Tsuruta, T., Seno, M., and Doyama, M. (eds.) (Elsevier, Vol. C, Synthetic Process and Control of Functionality Materials),601(1993).

    Google Scholar 

  24. Itoh, K., Chem. Phys. Letters, 1, 235 (1967).

    Google Scholar 

  25. Wasserman, E., Murray, R. W., Yager, W. A., Trozzolo, A. M., and Smolinsky, G., J. Am. Chem. Soc., 89, 5076 (1967).

    Google Scholar 

  26. The first conceptual advance in organic magnetism can date back to the two proposals of its possible occurrence on the theoretical side (1,2). The two proposals are based upon completely different theoretical grounds. The other approach exploits intermolecular interaction such as charge-transfer interaction between organic donors and acceptors, where subtle crystal packing modes are required to be controlled and tuned in crystalline solids (2) (through-space approach/McConnell-Breslow’s approach). It is not until recently that the first purely organic crystalline ferromagnet (Curie temperature Tc-’0.6K) based on a through-space approach has been found (Kinoshita-Sugano-Awaga model) (9). The molecular building spin block was a neutral doublet radical, p-nitrophenyl nitronyl nitroxide. The through-space approach associated with crystal packing modes includes Yamaguchi model where CT components have stable doublet radical moieties (15). Yamaguchi model can be termed as a CT-radical hybrid approach while the through-space approach originally proposed by McConnell (2a) and various modified varieties (10–13) can be termed as genuine CT approaches. Quite recently, a novel through-bond approach to polymeric organic ferromagnets has been proposed (14a) (polaronic ferromagnet approach), where doping processes of diamagnetic polymers designed in terms of the Tr-topological symmetry of conjugated systems give rise to ferromagnetically coupled spins induced in the Tr-systems. Molecular design of diamagnetic polymers employed in this approach is also based upon the Tr-topological symmetry argument which is essentially the same as in the topological spin polarisation approach (Itoh-Mataga’s approach). One of the strong motivations behind Fukutome’s polaronic ferromagnet approach is to find a way to organic ferromagnetism without exploitation of chemically reactive spin sites during the course of synthetic or preparation processes. A challenging and elaborate experiment by Dougherty’s group has demonstrated the occurrence of high-spin ground states from a doped polymer (14b). It turned out that the magnetic polymer employed was air-sensitive, hampering the originally proposed advantage. This through-bond approach is required to undergo further detailed evaluation of magnetic properties and electronic spin structures of model polymers from the microscopic viewpoint.

    Google Scholar 

  27. Kinoshita, M., Turek, P., Tamura, M., Nozawa, K., Shiomi, D., Nakazawa, Y., Ishikawa, M., Takahashi, M., Awaga, K., Inabe, T., and Maruyama, Y., Clrenr. Letters,1225(1991).

    Google Scholar 

  28. Takahashi, M., Turek, P., Nakazawa, Y., Tamura, M., Nozawa, K, Shiomi, D., Ishikawa, M., and Kinoshita, M., Phys. Rev. Letters, 67, 746 (1991).

    Google Scholar 

  29. Kinoshita, M., Mol. Cryst. Liq. Cryst., 232, 1 (1993).

    Google Scholar 

  30. Breslow, R., Pure Appl. Chem., 54, 927 (1982).

    Google Scholar 

  31. Breslow, R., Jaun, B., Klutz, R., and Xia, C. -Z., Tetrahedron, 38, 863 (1982).

    Google Scholar 

  32. Breslow, R., Maslak, P., and Thomaides, J. S., J. Am. Chem. Soc., 106, 6453 (1984).

    Google Scholar 

  33. Breslow, R., Mol. Cryst. Liq. Cryst., 125, 261 (1985).

    Google Scholar 

  34. Dormann, E., Nowak, M. J., Williams, K. A., Angus Jr., R. O., and Wudl, F., J. Am. Chem. Soc., 109, 2594 (1987).

    Google Scholar 

  35. Chiang_, L. Y., Johnston, D. C., Goshorn, D. P., and Bloch, A. N., J. Am. Chem. Soc., 111, 1925 (1989).

    Google Scholar 

  36. Torrance, J. B., Bagus, P. S., Johannsen, I., Nazzal, A. 1., and Parkin, S. S. P., J. Appl. Phys., 63, 2967 (1988).

    Google Scholar 

  37. Fukutome, H., Takahashi, A., and Ozaki, M., Chem. Phys. Letters, 133, 34 (1986).

    Google Scholar 

  38. Kaisaki, D. A., Chang_, W., and Doug herty, D. A., J. Am. Chem. Soc., 113, 2764 (1991).

    Google Scholar 

  39. (a) Yamaguchi, K., Toyoda, Y., and Fueno, F., Chemistry, 41, 585 (1986).

    Google Scholar 

  40. Yamaguchi, K., Toyoda, Y., and Fueno, T., Synthetic Metals,19 81(1987); Yamaguchi, K., Toyoda, Y., Nakano, M., and Fueno, T., ibid.,87(1987).

    Google Scholar 

  41. Yamaguchi, K., Namimoto, H., and Fueno, T., Chem. Phys. Letters, 166, 408 (1990).

    Google Scholar 

  42. Hughbanks, T., J. Am. Chenr. SOC., 107, 6851 (1985).

    Google Scholar 

  43. (a) Takui, T., Organic Magnetic Materials in Electronic and Optical Organic Functionality Materials, A. Taniguchi et al. (eds.) (Asakura Publishers, 1995 ).

    Google Scholar 

  44. Takui, T., Teki, Y., Sato, K., and Itoh, K., Mol. Cryst. Liq. Cryst.,in press(1995).

    Google Scholar 

  45. Takui, T., Sato, K., and Itoh, K., unpublished.

    Google Scholar 

  46. (a) Tyutyulkov, N., Schuster, P., and Polansky, O. E., Theor. Chim. Acta, 63, 291 (1983).

    Google Scholar 

  47. Tyutyulkov, N., Polansky, O. E., Schuster, P., Karabunarliev, S., and Ivanov, C. I., Theor. Chim. Acta, 67, 211 (1985).

    Google Scholar 

  48. Nasu, K., Phys. Rev. B, 33, 330 (1986).

    Google Scholar 

  49. Hughbanks, T. and Ketesz, M., Mol. Cryst. Liq. Cryst., 176, 115 (1989)

    Google Scholar 

  50. Yoshizawa, K., Takata, A., Tanaka, K., and Yamabe, T., Poly. J., 24, 857 (1992).

    Google Scholar 

  51. Mishima, A., Mol. Cryst. Liq. Cryst.,233, 61(1993) and references therein.

    Google Scholar 

  52. Nakamura, T. et al.,to be published.

    Google Scholar 

  53. Ichikawa, T., Bunseki, No. 12, 890 (1982).

    Google Scholar 

  54. Isoya, J., Bunseki, No. 4, 229 (1988).

    Google Scholar 

  55. Schweiger, A., Angew. Chem. Int. Ed. Engl., 30, 265 (1991).

    ADS  Google Scholar 

  56. Keijzers, C. P., Reijerse, E. J., and Schmidt, J. (eds.), Pulsed EPR: A New Field of Applications ( North Holland, Amsterdam/ Oxford/New York/Tokyo, 1989 ).

    Google Scholar 

  57. Hoff, A. J. (ed.), Advanced EPR, Applidcations in Biology and Biochemistry ( Elsevier, Amsterdam/Oxford/New York/Tokyo, 1989 ).

    Google Scholar 

  58. Kevan, L. and Bowman, M. K. (eds), Modern Pulsed and Continuous-wave Electron Spin Resonance ( John Wiley and Sons, New York/Chichester/Brisbane/Toronto/Singapore, 1990 ).

    Google Scholar 

  59. Dikanov, S. A. and Tsvetkov, Y. D., Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy ( CRC Press, Bocan Raton/Ann Arbor/London/Tokyo, 1992 )

    Google Scholar 

  60. Torrey, H. C., Phys. Rev., 76, 1059 (1949).

    Google Scholar 

  61. Solomon, I., Phys. Rev. Lett, 2, 301 (1959).

    Google Scholar 

  62. Yannoni, C. S. and Kendrick, R. D., J. Chem. Phys., 74, 747 (1981).

    Google Scholar 

  63. Samoson, A. and Lippmaa, E., Chem. Phys, Lett., 100, 205 (1983).

    Google Scholar 

  64. Samoson, A. and Lippmaa, E., Phys. Rev. B28, 65–67 (1983).

    Google Scholar 

  65. Geruts, F. M. M., Kenthens, A. P. M., and Veeman, W. S., Chem. Phys. Lett., 120, 206 (1985).

    Google Scholar 

  66. Kenthens, A. P. M., Lemmens, J. J. M., Geruts, F. M. M., and Veeman, W. S., J. Magn. Reson., 71, 62 (1987).

    Google Scholar 

  67. Janssen, R., Tijink, G. A. H., and Veeman, W. S., J. Chem. Phys., 88, 518 (1988).

    Google Scholar 

  68. Janssen, R. and Veeman, W. S., J. Chem. Soc. Faraday Trans., 84, 3747 (1988).

    Google Scholar 

  69. Kim, S. S. and Weissman, S. I., Rev. Chem. Intermed., 3, 107 (1980).

    Google Scholar 

  70. Furrer, R., Fujara, F., Lange, C., Stehlik, D., Vieth, Il. M., and Vollman, W., Chem. Phys. Lett., 75, 332 (1980).

    Google Scholar 

  71. Stehlik, D., Bock, C. H., and Thurnauer, M. C., Advanced EPR, ed. Hoff, A. J. ( Elsevier, Amsterdam/Oxford/New York/Tokyo, 1989 ), P. 371.

    Book  Google Scholar 

  72. Isoya, J., Kanda, H., Norris, J. R., Tang, J., and Bowman, M. K., Phys. Rev., B41, 3905 (1990).

    Google Scholar 

  73. Astashkin, A. V. and Schweiger, A., Chem. Phys. Lett., 174, 595 (1990).

    Google Scholar 

  74. Nishide, H., Kaneko, T., Nii, T., Katoh, K., Tsuchida, E., and Yamaguchi, K., J. Am. Chem. Soc., 117, 548 (1994).

    Google Scholar 

  75. Teki, Y., Takui, T., and Itoh, T., J. Chem. Phys., 88, 6134 (1988).

    Google Scholar 

  76. Brewer, R. G. and Hahn, E. L., Phys. Rev.,AH 1641(1975).

    Google Scholar 

  77. Loy, N. M. T., Phys. Rev. Lett., 36, 5624 (1977).

    Google Scholar 

  78. Hatanaka, H., Terao, T., and Hashi, T., J. Phys. Soc. Japan, 39, 835 (1975).

    Google Scholar 

  79. Hatanaka, H. and Hashi, T., J. Phys. Soc. Lapas, 39, 1139 (1975).

    Google Scholar 

  80. (a) Vega, S. and Pines, A., J. Chem. Phys., 66, 5624 (1977).

    Google Scholar 

  81. Vega, S., J. Chem. Phys., 68, 5518 (1978).

    Google Scholar 

  82. Wokaun, A. and Ernst, R. R., J. Clrenr. Phys., 67, 1752 (1977).

    Google Scholar 

  83. Vega, S. and Naor, Y., J. Chem. Phys., 75, 75 (1981).

    Google Scholar 

  84. Sato, K., Shiomi, D., Takui, T., and Itoh, K., to be published.

    Google Scholar 

  85. Holczer, K., Schmalbein, D., and Barker, P., Bruker Rep., 7, 4 (1988).

    Google Scholar 

  86. Barth, H., Höfer, P., and Holczer, K., Bruker - Rep., 2, 28 (1988).

    Google Scholar 

  87. Hertel, G. R. and Clark, H. M., J. Phys. Chem., 65, 1930 (1961).

    Google Scholar 

  88. Hutchings, M. T., Solid State Phys., 16, 227 (1964).

    Google Scholar 

  89. Low, W. and Offenbacher, E. L., in Solid State Physics, ed. Seitz, F. and Turnbull, D.(Acadenic Press, New York 1965 ), 17, p. 135.

    Google Scholar 

  90. Ichimura, A. S., Sato, K., Shiomi, D., Takui, T., Itoh, K., Lin, W. C., Dolphin, D. H., and Mcdowell, C. A., to be published.

    Google Scholar 

  91. Sato, K., Shiomi, D., Takui, T., and Iton, K., to be published.

    Google Scholar 

  92. Takui, T. et al., to be published.

    Google Scholar 

  93. Takui, T. and Itoh, K., unpublished.

    Google Scholar 

  94. Sato, K., Shiomi, D., Takui, T., Itoh, K., Rovira, C., and Veciana, J., to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Takui, T. et al. (1996). FT Pulsed ESR/ESTN(Electron Spin Transient Nutation) Spectroscopy Applied to High-Spin Systems. In: Kahn, O. (eds) Magnetism: A Supramolecular Function. NATO ASI Series, vol 484. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8707-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8707-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4730-4

  • Online ISBN: 978-94-015-8707-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics