Skip to main content

Assemblage of Organic Polyradicals with the Aid of Magnetic Metal Ions and Ordering of Their Spins in Macroscopic Scales

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 484))

Abstract

Both the high-dimensional structure and the strong exchange coupling are two most important factors for ordering spins in molecular systems at finite temperature. The coupling should be ferromagnetic for homogeneous spins and can be antiferromagnetic for alternating spins of different magnitude. Thus scrutinization of a number of crystals of organic free radicals has led to the discovery of several purely organic ferromagnets, e.g., 1 that order at nearly absolute-zero temperature (T < 1.5 K)[1]. Here the required magnetic structures are fortuitously satisfied but the magnitude of the ferromagnetic exchange coupling is quite limited as expected for intermolecular interaction. Efforts to use the intramolecular ferromagnetic coupling which can be stronger in an order or two of magnitude have led to the synthesis of unprecedentedly high-spin polycarbenes such as 2 [2] or very stable polyradical 3 [3]. The intramolecular spin alignment in these systems is based on orthogonality of the singly occupied orbitals either of the one-centered diradical, carbenes, or the m-phenylene diradicals having right topological symmetry [4]. Since the one-dimensional spin alignment cannot in principle afford the spontaneous magnetization at finite temperature and is vulnerable to chemical defects in practice [5], the two-dimensional network structure 4 has then been employed as a long-range goal. While some constituent units 5 and 6 contained in 4 have been synthesized and proved to be the highest-spin hydrocarbons {S = 6 and 9 for 5 (n = 6 and 9)} ever reported [6], intermolecular interactions between the polycarbene molecules were found to be very weak or mostly antiferromagnetic. Too much branching seemed to cause coupling of the two carbene centers between the chains [7]. Thus rigid polymer network 4 itself remained to be synthesized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kinoshita, P. Turek, M. Tamura, Y. Nozawa, D. Shiomi, Y. Nakazawa, M. Ishikawa, M. Takahashi, K. Awaga, T. Inabe, and Y. Maruyama, Chem. Lett., 1991, 1225;

    Google Scholar 

  2. R. Chiarelli, M. A. Novak, A. Rassat, and J. L. Tholence, Nature, 363, 147 (1993);

    Article  ADS  Google Scholar 

  3. T. Nogami, K. Tomioka, T. Ishida, H. Yoshikawa, M. Yasui, F. Iwasaki, H. Iwamura, N. Takeda, and M. Ishikawa, Chem. Lett., 1994, 29;

    Google Scholar 

  4. T. Ishida, H. Tsuboi, T. Nogami, H.Yoshikawa, M. Yasui, F. Iwasaki, H. Iwamura, N. Takeda, and M. Ishikawa, Chem. Lett., 1994, 919;

    Google Scholar 

  5. T. Sugawara, M. Matsushita, A. Izuoka, N. Wada, N. Takeda, and M. Ishikawa, J. Chem. Soc., Chem. Comm., 1994, 1723;

    Google Scholar 

  6. K. Mukai, K. Konishi, K. Nedachi, and K. Takeda, J. Magn. Magn. Mater., 140–144, 1449 (1995).

    Article  ADS  Google Scholar 

  7. Y. Teki, T. Takui, K. Itoh, H. Iwamura, and K. Kobayashi, J.Am.Chem.Soc., 105, 3722 (1983);

    Article  Google Scholar 

  8. Y. Teki, T. Takui, K. Itoh, H. Iwamura, and K. Kobayashi, J.Am.Chem.Soc., 108, 2147 (1986);

    Article  Google Scholar 

  9. T.Sugawara, S. Bandow, K. Kimura, H. Iwamura, and K. Itoh, J.Am.Chem.Soc., 106, 6449 (1984);

    Article  Google Scholar 

  10. T.Sugawara, S. Bandow, K. Kimura, H. Iwamura, and K. Itoh, J.Am.Chem.Soc., 108, 368 (1986);

    Article  Google Scholar 

  11. H.Iwamura. Pure Appl.Chem., 58, 187 (1986);

    Article  Google Scholar 

  12. N. Koga and H. Iwamura, Nippon Kagaku Kaishi, 1989, 1456;

    Google Scholar 

  13. I. Fujita, Y. Teki, T. Takui, T. Kinoshita, K. Itoh, F. Miko, Y. Sawaki, H. Iwamura, A. Izuoka, and T. Sugawara, J.Am.Chem.Soc., 112, 4074 (1990);

    Article  Google Scholar 

  14. T. Ishida and H. Iwamura, J. Am. Chem. Soc., 113, 4238 (1991).

    Article  Google Scholar 

  15. K.Itoh. Chem.Phys.Lett. 1, 235 (1967);

    Article  ADS  Google Scholar 

  16. E.Wassennan, R. W. Murray, W. A. Yager, A. M. Trozzolo, G. Smolinsky, J. Am. Chem. Soc., 89, 5076 (1967);

    Article  Google Scholar 

  17. N.Mataga, Theor.Chem.Acta 10, 372 (1968);

    Article  Google Scholar 

  18. J. Higuchi, J. Chem. Phys., 38, 1237 (1963).

    Article  ADS  Google Scholar 

  19. A.Rajca, Chem.Rev. 94, 871 (1994);

    Article  Google Scholar 

  20. K. Matsuda, N. Nakamura, K. Takahashi, K. Inoue, N. Koga, H. Iwamura, J. Am. Chem. Soc., 117, 5550 (1995).

    Article  Google Scholar 

  21. N. Nakamura, K. Inoue, H. Iwamura, T. Fujioka, Y. Sawaki, J. Am. Chem. Soc., 114, 1484 (1992);

    Article  Google Scholar 

  22. N.Nakamura, K. Inoue, and H. Iwamura,Angew. Chem., Int. Ed. Engl., 32, 872 (1993).

    Article  Google Scholar 

  23. K. Matsuda, N. Nakamura, K. Inoue, N. Koga, and H. Iwamura, accepted for publication in Chem. Eur. J.

    Google Scholar 

  24. O. P. Anderson, Inorg. Chem., 19, 1417 (1980);

    Article  Google Scholar 

  25. J. R. Doedens, Inorg. Chem., 20, 2677 (1981).

    Google Scholar 

  26. G. R. Eaton and S. S. Eaton, Acc. Chem. Res., 21, 107 (1988);

    Article  Google Scholar 

  27. A. Caneschi, D. Gatteschi, J. Laugier, P. Rey, and R. Sessoli, Inorg. Chem., 27, 1553 (1988);

    Article  Google Scholar 

  28. A. Caneschi, D. Gatteschi, J. P. Renard, P. Rey, and R. Sessoli, Inorg. Chem., 28, 1976 (1989);

    Article  Google Scholar 

  29. C. Benelli, A. Dei, D. Gatteschi, H. U. Gudel, and L. Pardi, Inorg. Chem., 28, 3089 (1989);

    Article  Google Scholar 

  30. A. Caneschi, D. Gatteschi, R. Sessoli, and P. Rey, Acc. Chem. Res., 22, 392 (1989);

    Article  Google Scholar 

  31. A. Caneschi, D. Gatteschi, and P. Ray, Progr. Inorg. Chem., 39, 331 (1991);

    Article  Google Scholar 

  32. A. Caneschi, D. Gatteschi, and R. Sessoli, D.Gatteschi et al. eds. Magnetic Molecular Materials, NATO ARI Series E, Kluwer Academic Publishers, p. 215 (1991);

    Google Scholar 

  33. A. B. Burdukov, V. I. Ovcharenko, V. N. Ikorski, N. V. Pervukhina, N. V. Podbererskaya, I. A. Grigor’ev, S. V. Larionov, L. B Volodarsky, Inorg. Chem. 30, 972 (1991);

    Article  Google Scholar 

  34. M. Kitano, N. Koga, H. Iwamura, J. Chem. Soc., Chem. Commun., 1994, 447;

    Google Scholar 

  35. Y. Ishimaru, K. Inoue, N. Koga, H. Iwamura, Chem. Lett. 1994, 1693;

    Google Scholar 

  36. M. Kitano, Y. Ishimaru, K. Inoue, N. Koga, H. Iwamura, Inorg. Chem., 33, 6012 (1994).

    Article  Google Scholar 

  37. Original formulation of this strategy appeared in: (a) K. Inoue, T. Hayamizu, and H. Iwamura, Mol. Cryst. Liq. Cryst. 273 67 (1995);

    Google Scholar 

  38. H. Iwamura, K. INoue, T. Hayamizu, Pure Appl. Chem.,(1996) in press.

    Google Scholar 

  39. A. Calder, A. R. Forrester, P. G. James, and G. R. Luckhurst, J., Am. Chem. Soc., 91, 3724 (1969);

    Article  Google Scholar 

  40. K. Mukai, H. Nagai, and K. Ishizu, Bull. Chem. Soc. Jpn., 48, 2381 (1975);

    Article  Google Scholar 

  41. F. Kanno, K. Inoue, N. Koga, and H. Iwamura, J. Phys. Chem., 97, 13267 (1993).

    Article  Google Scholar 

  42. T. Mitsumori, K. Inoue, N. Koga, and H. Iwamura, J. Am. Chem. Soc., 117, 2467 (1995).

    Article  Google Scholar 

  43. K. Inoue and H.Iwamura. J. Chem.Soc., Chem. Commun. 1994, 2273.

    Google Scholar 

  44. K. Inoue, T. Hayamizu, and H. Iwamura, Chem. Lett., 1995, 745.

    Google Scholar 

  45. K. Inoue and H. Iwamura. J. Am. Chem. Soc. 116, 3173 (1994).

    Article  Google Scholar 

  46. K. Inoue and H. Iwamura. Adv. Mater. in press; (b) R.Uchiyama and H. Iwamura, unpublished resuts.

    Google Scholar 

  47. D. C. Oniciu, K. Matsuda, and H. Iwamura, J. Chem. Soc., Perkin II,in press.

    Google Scholar 

  48. B. Bleaney and K. D. Bowers, Proc. R. Soc. London, A214, 451 (1952).

    Article  ADS  Google Scholar 

  49. H. M. McConnell, J. Chem. Phys., 39, 1910 (1963);

    Google Scholar 

  50. A. Izuoka, S. Murata, T. Sugawara, and H. Iwamura, J. Am. Chem. Soc., 109, 2631 (1987).

    Article  Google Scholar 

  51. K.Inoue, T. Hayamizu, and H. Iwamura, submitted for publication in J. Am. Chem. Soc.

    Google Scholar 

  52. M.Hitzfeld, P. Ziemann, W. Buckel, and H. Claus, Phys. Rev. B, 29, 5023 (1984);

    Google Scholar 

  53. O. Kahn, Organic and Inorganic Low-Dimensional Crystalline Materials; P. Delhaes, M. Drillon, eds., NATO ASI Series 168; Plenum; New York, 1987; p. 93.

    Google Scholar 

  54. C. Murray and C. Wentrup, J. Am. Chem. Soc., 97, 7467 (1975);

    Article  Google Scholar 

  55. M. Ono, M.Sc. Thesis, The University of Tokyo, 1991.

    Google Scholar 

  56. N. Koga, Y. Ishimaru, and H. Iwamura, submitted fbr publication in Angew. Chem.

    Google Scholar 

  57. H.O. Stumpf, Y. Pei, O. Kahn, J. Sletten, and J. P. Renard, J. Am. Chem. Soc. 115, 6738 (1993).

    Article  Google Scholar 

  58. H.O. Stumpf, L. Ouahab, Y. Pei, D. Grandjean, and O. Kahn, Science, 261, 447 (1993).

    Article  ADS  Google Scholar 

  59. J.M. Manriquez, G. T. Yee, R. S. McLean, A. J. Epstein, and J. S. Miller, Science, 252, 1415 (1991).

    Article  ADS  Google Scholar 

  60. J. S. Miller, A. J. Epstein, and W. M. Reiff, Chem. Rev., 88, 201 (1988);

    Article  Google Scholar 

  61. J. S. Miller and D. A. Dougherty, Eds., Ferromagnetic and High Spin Molecular Based Materials, Mol. Cryst. Liq. Cryst., 176 (1989);

    Google Scholar 

  62. D. Gatteschi, O. Kahn, J. S. Miller, and F. Palacio, Eds., Magnetic Molecular Materials, NATO ARI Series E, Kluwer Academic Publishers 1991, E198;

    Google Scholar 

  63. H. Iwamura and J. S. Miller, Eds., Chemistry and Physics of Molecular Based Magnetic Materials, Mol. Cryst. Liq.Cryst., 232 and 233 (1993);

    Google Scholar 

  64. O. Kahm, Molecular Magnetism, VCH, Weinheim (1993);

    Google Scholar 

  65. J. S. Miller and A. J. Epstein, Angew. Chem., Int. Ed. Engl., 33, 385 (1994);

    Article  Google Scholar 

  66. J. S. Miller and A. J. Epstein, Eds., Fourth International Conference on Molecule-Based Magnets, Mol. Cryst. Liq. Cryst., 271–274 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Iwamura, H., Inoue, K., Koga, N., Hayamizu, T. (1996). Assemblage of Organic Polyradicals with the Aid of Magnetic Metal Ions and Ordering of Their Spins in Macroscopic Scales. In: Kahn, O. (eds) Magnetism: A Supramolecular Function. NATO ASI Series, vol 484. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8707-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8707-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4730-4

  • Online ISBN: 978-94-015-8707-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics