Skip to main content

Moving and Stationary Dislocations in Poroelastic Solids and Applications to Aseismic Slip in the Earth’s Crust

  • Chapter
Mechanics of Poroelastic Media

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 35))

Abstract

Results for the pore pressure induced by a plane strain shear dislocation that starts from rest, moves a finite distance at constant speed and stops demonstrate that coupling between deformation and diffusion causes a complex response even though the spatial distribution of slip is simple. A summary of recent solutions for stationary, instantaneous plane strain shear and opening dislocations and steadily moving shear dislocations demonstrates that coupling between deformation and diffusion is significant for locations near the dislocation edge and for short times. In addition, the response depends strongly on whether the plane of the dislocation is permeable or impermeable. Applications of these solutions to interpret water well level changes caused by aseismic slip (creep) in the Earth’s crust are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M. and Stegun, L A., Eds. (1964), Handbook of Mathematical Functions, Appt. Math. Ser. 55, National Institute of Standards and Technology, Gaithersburg, Md.

    Google Scholar 

  • Atkinson, C. and Craster, R.V. (1991), Plane strain fracture in poroelastic media, Proc. Royal Society London A 434, 605–633.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Biot, M. A. (1941), General theory of three dimensional consolidation, J. Applied Physics 12, 155–164.

    Article  ADS  MATH  Google Scholar 

  • Booker, J. R. (1974), Time dependent strain following faulting of a porous medium, J. Geophysical Research 79, 2037–2044.

    Article  ADS  Google Scholar 

  • Byerlee, J. D. (1990), Friction, overpressure and fault normal compression, Geophysical Research Letters 17, 2109–2112.

    Article  ADS  Google Scholar 

  • Carslaw, H. S. and Jaeger, J. C. (1959), Conduction of Heat in Solids, 2nd Ed., Oxford University Press, Oxford, U. K.

    Google Scholar 

  • Cleary, M. P. (1977), Fundamental solutions for a fluid-saturated porous solid, Int. J. Solids and Structures 13, 785–806.

    Article  MathSciNet  MATH  Google Scholar 

  • Cleary, M. P. (1978), Moving singularities in elasto-diffusive solids with applications to fracture propagation, Int. J. Solids and Structures 14, 81–97.

    Article  MATH  Google Scholar 

  • Detournay, E. and Cheng, A. H-D. (1991a), Plane strain analysis of a stationary hydraulic fracture in a poroelastic medium, Int. J. Solids and Structures 27, 1645–1662.

    Article  MATH  Google Scholar 

  • Detournay, E. and Cheng, A. H-D. (1991b), Fundamentals of poroelasticity, in J. A. Hudson (ed.), Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. 2, Pergamon Press.

    Google Scholar 

  • Detournay, E., Cheng, A. H-D., and McLennan, J. D. (1990), A poroelastic PKN hydraulic fracture model based on an explicit moving mesh algorithm. J. of Energy Resources Technology 112, 224–230.

    Article  Google Scholar 

  • Johnson, A. G., Kovach, R. L. and Nur, A. (1973), Pore pressure changes during creep events on the San Andreas fault, J. Geophysical Research 78, 851–857.

    Article  ADS  Google Scholar 

  • Lippincott, D. K., Bredehoeft, J. D. and Moyle, W. R. Jr. (1985), Recent movement on the Garlock Fault suggested by water level fluctuations in a well in Fremont Valley, California, J. Geophysical Research 90, 1911–1924.

    Article  ADS  Google Scholar 

  • Nur, A. and Byerlee, J. D. (1971), An exact effective stress law for elastic deformation of rock with fluids, J. Geophysical Research 76, 6414–6419.

    Article  ADS  Google Scholar 

  • Nur, A. and Booker, J. R. (1972), Aftershocks caused by fluid flow? Science 175, 885–887.

    Article  ADS  Google Scholar 

  • Rice, J. R. (1992), Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault, in Brian Evans and Teng-Fong Wong (eds.), Fault Mechanics and Transport Properties of Rocks, Academic Press Ltd., pp. 475–503.

    Google Scholar 

  • Rice, J. R. and Cleary, M. P. (1976), Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents, Reviews of Geophysics 14, 227–241.

    Article  ADS  Google Scholar 

  • Rice, J. R. and Simons, D. A. (1976), The stabilization of spreading shear faults by coupled deformation-diffusion effects in fluid-infiltrated porous materials, J. Geophysical Research 81, 5322–5344.

    Article  ADS  Google Scholar 

  • Roeloffs, E. A. and Rudnicki, J. W. (1984/85), Coupled-deformation diffusion effects on water level changes due to propagating creep events, Pure and Applied Geophysics (PAGEOPH) 122, 560–582.

    Google Scholar 

  • Roeloffs, E. A., Burford, S. S., Riley, F. S. and Records, A. W. (1989), Hydrologic effects on water level changes associated with episodic fault creep near Parkfield, California, J. Geophysical Research 94, 12387–12402.

    Article  ADS  Google Scholar 

  • Rudnicki, J. W. (1984), Effects of dilatant hardening on the development of concentrated shear deformation in fissured rock masses, J. Geophysical Research 89, 9259–9270.

    Article  ADS  Google Scholar 

  • Rudnicki, J. W. (1986), Slip on an impermeable fault in a fluid-saturated rock mass, in S. Das, J. Boatwright, and C. H. Scholz (eds.), Earthquake Source Mechanics, Geophys. Monogr. Ser., vol. 37, AGU, Washington, D. C., pp. 81–89.

    Chapter  Google Scholar 

  • Rudnicki, J. W. (1987), Plane strain dislocations in linear elastic diffusive solids, J. Applied Mechanics 54, 545–552.

    Article  ADS  MATH  Google Scholar 

  • Rudnicki, J. W. (1991), Boundary layer analysis of plane strain shear cracks propagating steadily on an impermeable plane in an elastic diffusive solid, J. Mechanics and Physics of Solids 39, 201–221.

    Article  ADS  Google Scholar 

  • Rudnicki, J. W. and Hsu, T.-C (1988), Pore pressure changes induced by slip on permeable and impermeable faults, J. Geophysical Research 93, 3275–3285.

    Article  ADS  Google Scholar 

  • Rudnicki, J. W. and Roeloffs, E. A. (1990), Plane strain shear dislocations moving steadily in linear elastic diffusive solids, J. Applied Mechanics 57, 32–39.

    Article  ADS  Google Scholar 

  • Rudnicki, J. W. and Koutsibelas, D. A. (1991), Steady propagation of plane strain shear cracks on an impermeable plane in an elastic diffusive solid. Int. J. Solids and Structures 27, 205–225.

    Article  Google Scholar 

  • Rudnicki, J. W., Yin, J. and Roeloffs, E. A. (1993), Analysis of water level changes induced by fault creep at Parkfield, California, J. Geophysical Research 98, 8143–8152.

    Article  ADS  Google Scholar 

  • Rudnicki, J. W. and Wu, M. (1993), Pore pressure changes induced by slip in a poroelastic half-space. Draft manuscript submitted as part of the Final Report to U. S. Geological Survey for Award No. 1434–92-G-2164, Coupled Deformation Diffusion Solutions fo the Interpretation of Slip Induced Water Well level Changes at Parkfield.

    Google Scholar 

  • Ruina, A. (1978), Influence of coupled deformation-diffusion effects on retardation of hydraulic fracture, in Y. S. Kim (ed.), Proc. U. S. Symposium on Rock Mechanics, 19th, Stateline, Nev., University of Nevada Reno, pp. 274–282.

    Google Scholar 

  • Simons, D. A. (1979), The analysis of propagating slip zones in porous elastic media, in R. Burridge (ed.), Fracture Mechanics, Proceedings of the symposium in applied mathematics of AMS and SIAM, SIAMAMS, New York, pp.. 153–169.

    Google Scholar 

  • Wang, C-Y. and Lin, W. (1978), Constitution of the San Andreas fault zone at depth, Geophysical Research Letters 5, 741–744.

    Article  ADS  Google Scholar 

  • Wesson, R. L. (1981), Interpretation of changes in water level accompanying fault creep and implications for earthquake prediction, J. Geophysical Research 86, 9259–9267.

    Article  ADS  Google Scholar 

  • Wu, F. T., Blatter, L. and Roberson, H. (1975), Clay gouges in the San Andreas fault system and their possible implications, Pure and Applied Geophysics (PAGEOPH) 113, 87–95.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rudnicki, J.W. (1996). Moving and Stationary Dislocations in Poroelastic Solids and Applications to Aseismic Slip in the Earth’s Crust. In: Selvadurai, A.P.S. (eds) Mechanics of Poroelastic Media. Solid Mechanics and Its Applications, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8698-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8698-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4513-3

  • Online ISBN: 978-94-015-8698-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics