Skip to main content

Avalanche Dynamics

  • Chapter
Hydrology of Disasters

Part of the book series: Water Science and Technology Library ((WSTL,volume 24))

Abstract

This article reviews recent work on avalanche, landslide and rockfall dynamics. Two limiting cases of these flows exist, the so-called flow avalanche, i. e., the dense gravity driven “laminar type flow” in which the role of the solid particles dominates, while that of the interstitial fluid is negligible — these flows are typical for most sturzstroms, debris flows, landslides, rockfalls and snow avalanches — and the less dense powder avalanche, i. e., the turbulent flow of air borne particles in a mixture, in which the role of the fluid dominates, while that of the particles is less significant — these flows are typical for density and turbidity currents such as dust clouds occuring in the desert, in pyroclastic volcanic eruptions, in submarine slope instabilities and in snow and ice avalanches. The latter application will be our focus. The state of the art in the description of both these phenomena is given. In the Introduction, after some historical remarks, we turn our attention to the characterization of the physical behaviour of the two limiting flow types and then discuss the laws of similitude and model theory relevant to modelling the flows in the laboratory.

Flow avalanches, landslides and rockfalls are discussed first. It is argued that these flows can be described as a continuum consisting of a cohesionless granular material. Such materials exhibit dilatancy effects and large energy dissipation, and under quasi static or dynamic shear deformation, they exhibit the property that the ratio of the shear stress to the normal stress on any interior plane is nearly constant, a fact reflected in the constancy of the internal angle of friction. In shear cell tests under quasi static and rapid deformation at constant normal load, the internal stress is practically independent of the rate of shear; when the shear deformation is performed at constant volume however, the dependence of the stress on the rate of shear is quadratic. Three different flow regimes which partly interact can be distinguished: (i), Dry Coulomb, rubbing frictional behaviour, typical when particles are in contact and ride one over the other; (ii), collisional interactions when particles bounce against each other, contact is short, and the mean free path is of the order of the particle diameter; (iii), translational transport when the mean free path is large and particle concentrations correspondingly small. For the second and the third regime, statistical theories along the lines of the kinetic theory of a dense gas have been developed, but some of these show ill behaviour in steady chute flow problems. An adequate formulation must incorporate quasistatic and collisional contributions; the emerging theories, however, are patched together from alien components. Furthermore, simple chute flow problems turn out to be very difficult to solve. In the flow regime where most of the moving granular mass rides more or less passively on a fluidized bed, Savage and Hutter (1989) have proposed to treat the material as being of the rate independent Coulomb type, both in the interior and at the bed, with constant internal and bed friction angle ø and δ, respectively. In this formulation, the bed friction angle δ is a measure of the resistance of the bed to a fluidized thin layer, a first approximation to a more general bed friction law that may also include viscous components. The depth averaged field equations of Savage and Hutter reproduce laboratory chute flow of a cohesionless granular material quite well even in cases when a localized bump in an otherwise convexly curved bed separates an initially single mass into two separate piles. The equations also permit similarity solutions, i.e., solutions of permanent shape (but not size). These solutions are not quantitatively corroborated in general by laboratory experiments, but they permit better analytic insight and thus help in understanding the model equations physically. Extensions of both theory and experiments to avalanche flows that spread in two dimensions indicate promising results.

Powder avalanches have been treated in the literature by essentially two different concepts: (i), a simple binary mixture of turbulent air and suspended particles with two balance laws for each constituent (or the mixture as a whole and one constituent: the particles) and a momentum balance for the mixture as a whole and (ii), a two-phase mixture with balance laws of mass and linear momentum for each constituent.

The first class of models concentrates on integral, or global representations. Long turbulent gravity currents from a steady continuous source on inclined planes and short, finite mass “clouds” or “thermals” are studied from the viewpoint of depth integrated mass, buoyancy and momentum balance laws. Typical mean velocity and averaged density variations are determined for idealized conditions, and corresponding results compared or matched with data obtained from laboratory experiments. Air entrainment through the upper free surface of the turbulent gravity current is accounted for, but entrainment of the particles from the bed or deposition of particles at the bed are often ignored when asymptotic behaviour for large time or large distances from the source are considered. Such earlier and simpler models of powder avalanches do not quantify the level of turbulence and cannot, therefore, properly describe the physical conditions of autosuspension or re-sedimentation of the particles. We present, however, a brief summary of formulations for long and short gravity currents in which the balance laws of mass, buoyancy and momentum are complemented by a balance of the averaged turbulent fluctuation energy that is coupled with these by closure statements on basal friction and snow entrainment Such models can be computationally handled, but have not been verified in detail by laboratory experiments, even though an ad hoc application of the model equations to a real avalanche event indicates promising results. Proposals of theoretical formulations for simple mixtures of a turbulent fluid carrying suspended particles have also been put forward on the basis of κ-ε closure and using local equations; very little experience, however, seems to have been done with this model.

Two phase turbulent mixtures that use the balance laws of mass and momentum for both constituents have also been proposed; they also use second order (κ-ε) closure conditions. The novel theoretical feature in these models is, however, not so much the set of field equations than the handling of the free boundary as a singular surface, a concept that is briefly touched upon here. Finally we also present experimental results on the distribution of the streamwise particle velocity and density, both in the tail and the head of a laboratory powder avalanche of polystyrene particles suspended in water and moving down a straight and curved chute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, H., Brennen, C. E. and Sabersky, R. H., 1992; Analysis of the fully developed chute flow of granular materials, J. App. Mech. 59 (109), 109–119

    Article  Google Scholar 

  • Anonymous, 1990; Soviet avalanche research, Avalanche bibliography update: 1977–1983, World Center for Glaciology (Snow and Ice), Report No GD-16

    Google Scholar 

  • Akiyama, J and Fukushima, Y. 1985 Entrainment of noncohesive bed sediment into suspension. External Memo. No 175, St. Anthony Falls Hydraulic Laboratory, University of Minnesota, Minneapolis, USA.

    Google Scholar 

  • Anonymous, 1990; Snow avalanche hazards and miligation in the United States, National Research Council, Panel on Snow Avalanches, National Academy Press, Washington, D. C., pp. I–X, 1–54

    Google Scholar 

  • Bagnold, R. A., 1954; Experiments on a gravity free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. London, Ser. A 225, 49–63.

    Google Scholar 

  • Bagnold, R. A., 1962; Auto-suspension of transported sediment: turbidity currents, Proc. R. Soc. London Ser. A, 265, 315–319

    Google Scholar 

  • Bailard, J., 1978; An experimental study of granular-fluid flow, Ph. D. Thesis, Univ. of Calif., San Diego, 172 pp.

    Google Scholar 

  • Beghin, P., 1979; Etude des bouffées bidimensionnelles de densité en écoulement sur pente avec application aux avalanches de neige poudreuse, Thèse, Grenoble

    Google Scholar 

  • Beghin, P., Hopfinger, E. J. and Britter, R. E., 1981; Gravitational convection from instantaneous sources on inclined boundaries, Journal of Fluid Mechanics, 107, 407–422

    Article  Google Scholar 

  • Brandstätter, W., 1993; Mehrdimensionale Simulation im Automobilbau, Klimatechnik und Alpinem Umweltschutz, Habilitationsschrift, Montanuniversität Leoben

    Google Scholar 

  • Britter, R. E. and Linden, P. F., 1980; The motion of the front of a gravity current traveling down an incline, Journal of Fluid Mechanics, 99, 531–543

    Article  Google Scholar 

  • Britter, R., E. and Simpson, J. E., 1978; Experiments on the dynamics of a gravity current head, Journal of Fluid Mechanics, 88, 223–240

    Article  Google Scholar 

  • Buggisch, H. and Stadler, R., 1986; On the relation between shear rate and stresses in one-dimensional steady flow of moist bulk solids, Proc. World Congress Particle Technolgy, Part III, Mechanics of Pneumatic and Hydraulic Conveying and Mixing, Nürnberg, 16–18 April, 187–202.

    Google Scholar 

  • Chu, F. H., Pilkey, W. D. and Pilkey, O. H., 1979; An analytical study of turbidity current steady flow, Mar. Geol., 33, 205–220

    Google Scholar 

  • Davies, T. R. H., 1982; Spreading of Rock avalanche debries by mechanical fluidization, Rock Mech., 15, 9–29.

    Article  Google Scholar 

  • Dent, J. D., 1986; Flow properties of granular materials large overburden loads, Acta Mecha-nica, 64, 111–122

    Google Scholar 

  • Dent, J. D.and Lang, T. E., 1980; Modeling of snow flow, J. Glaciology, 26 (94), 1311–40

    Google Scholar 

  • Dent, J. D.and Lang, T. E., 1983; A biviscous modified Bingham model of snow avalanche motion, Annals of Glaciology, 4, 42–46

    Google Scholar 

  • Egashira, S., 1980; Basic research on the flow and mechanism of mixing of density-stratified fluids, Ph. D. thesis, Kyoto University, Japan

    Google Scholar 

  • Ellison, T., H. and Turner, J., S., 1959; Turbulent entrainment in stratified flows, Journal of Fluid Mechanics, 6, 423–448

    Google Scholar 

  • Erismann, T. H., 1979; Mechanisms of large landslides, Rock Mech., 12, 15–46.

    Article  Google Scholar 

  • Erismann, T. H., 1986; Flowing, Rolling, Bouncing, Sliding: Synopsis of basic mechanisms, Acta Mechanica, 64, 101–110

    Google Scholar 

  • Escudier, M. P. and Maxworthy, T., 1973; On the formation of turbulent thermals, Journal of Fluid Mechanics, 61, 541–552

    Article  Google Scholar 

  • Foda, M. A., 1994; Landslides riding on basal pressure waves, Cont. Mech. and Thermodyn. 6, (to appear)

    Google Scholar 

  • Fukushima, Y. and Parker, G., 1990; Powder snow avalanches: Theory and application, J. Glaciology, 36, (123), 229–237

    Google Scholar 

  • Garcia, M. H., 1985; Experimental study of turbidity currents, M.S. Thesis, Dept. of Civil and Mineral Engineering, University of Minnesota, USA, 138 pp

    Google Scholar 

  • Gartshore, I. S. and Newman, B. G., 1969; The turbulent wall jet in an arbitrary pressure gradient. Aeronaut. Q., 20, 25–56.

    Google Scholar 

  • Georeson, E. H. M., 1942; The free streaming of gases in sloping galleries. Proc. R. Soc., Lond. A 180, 484–493.

    Google Scholar 

  • Gibson, M. M. and Launder, B. E., 1978; Ground effects on pressure fluctuations in the atmospheric boundary layer, Journal of Fluid Mechanics, 86, 491–517

    Article  Google Scholar 

  • Goddard, J. D., 1986; Dissipative materials as constitutive models for granular media, Acta Mechanica, 63, 3–13.

    Article  Google Scholar 

  • Goguel, J., 1978; Scale dependent rock mechanisms, in Voigt, B., (ed.), Rockslides and avalanches, Vol 1, Elsevier,167–180

    Google Scholar 

  • Greve, R., 1991; Zur Ausbreitung einer Granulatlawine entlang gekrümmter Flächen - Laborexperimente und Modellrechnungen, Diplomarbeit, Fachbereich Mechanik, Technische Hochschule Darmstadt, Deutschland.

    Google Scholar 

  • Greve, R. and Hutter K., 1993; The motion of a granular avalanche in a convex and concave curved chute: Experimenrts and theoretical predictions, Phil. Trans. R. Soc. London A 342, 573–6004

    Google Scholar 

  • Greve, R., Koch, T. and Hutter K., 1993; Unconfined flow of granular avalanches along a partly curved surface. Part I: Theory. Proc. R. Soc. London A 445, 399–413

    Google Scholar 

  • Gubler, H.-U., 1991; Proceedings of a workshop on avalanche dynamics, Mitt. des Eidg. Instituts für Schnee-und Lawinenforschung of avalanche dynamics.

    Google Scholar 

  • Gubler, H.-U., 1987; Measurements and modelling of snow avalanche speeds, In: Avalanche Formation, Movement and Effects., (B. Salm and H.-U. Gubler eds.), IAHS, Publ. No. 162, 405–420

    Google Scholar 

  • Hanes, D. M. and Inman, D. L., 1985; Observation of rapidly flowing granular-fluid mixtures, Journal of Fluid Mechanics, 150, 357–380.

    Article  Google Scholar 

  • Heim, A.,1882; Der Bergsturz von Elm, Deutsche Geol. Gesellsch. Zeitschrift, 34, 74–115

    Google Scholar 

  • Heim, A., 1932; Bergsturz und Menschenleben, Beiblatt zur Vierteljahresschrift der Natf. Gesellschaft, Zürich, 20, 1–218

    Google Scholar 

  • Heisenberg, W., 1948; Zur statistischen Theorie der Turbulenz, Z. für Physik, 124, pp. 628–657

    Article  Google Scholar 

  • Hermann, F., 1990; Experimente zur Dynamik von Staublawinen in der Auslaufzone, Mitteilung Nr. 107 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, 1–262

    Google Scholar 

  • Hermann, F. und Rutter, K., 1991, Laboratory experiments on the dynamics of powder snow avalanches in the runout zone, J. Glaciology, 37, (126), 281–295.

    Google Scholar 

  • Hermann, F. und Scheiwiller, T., 1988; Experiments on the deposition by laboratory powder snow avalanches, Mitteilung Nr. 94 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, 307–322

    Google Scholar 

  • Hermann, F., Hermann, J. and Hutter, K., 1987; Laboratory experiments on the dynamics of powder snow avalanches. Avalanche Formation Movement and Effects (Proc. of the Davos Symposium, September 1986), IAHS Publ. No. 162, 431–440

    Google Scholar 

  • Hinze, J., 0., 1960; On the hydrodynamics of turbidity currents, Geol. Mijnb. 39e, 18–25

    Google Scholar 

  • Hopfinger, E. J. und Tochon-Danguy, J. C., 1977; A model study of powder snow avalanches, Journal of Glaciology, 19, 81, 343–356

    Google Scholar 

  • Hopfinger, E. J., 1983; Snow avalanche motion and related phenomena, Ann. Rev. of Fluid Mechanics, 15, 47–76

    Article  Google Scholar 

  • Hopfinger, E., J. and Beghin, P., 1980; Buoyant clouds appreciably heavier than the ambient fluid on sloping boundaries, Second Int’l Symp. on Stratified Flows, Trondheim, Norway, 1, 495–506

    Google Scholar 

  • Hsü, K., 1975; On sturzstroms - Catastrophic debries streams generated by rockfalls, Geol. Soc. Am. Bull., 86, 129–140.

    Article  Google Scholar 

  • Hsü, K., 1978, Albert Heim; Observations on landslides and relevance to modern inter- pretations, in: Voigt, B., (ed.), Rockslides and avalanches, Vol 1 (Elsevier), 69–93.

    Google Scholar 

  • Hungr, O. and Morgenstern, N. R., 1984a; Experiments on the flow behaviour of granular materials at high velocity in an open channel flow. Geotechnique, 34, 405–413.

    Article  Google Scholar 

  • Hungr, O. and Morgenstern, N. R., 1984b; High velocity ring shear tests on sand. Geotechnique, 34, 415–421.

    Article  Google Scholar 

  • Huber, A., 1980; Schwallwellen in Seen als Folge von Felsstürzen, Mitteilung No. 47 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH, 122 pp.

    Google Scholar 

  • Hutter, K., 1989; A continuum model for finite mass avalanches having shear-flow and plug-flow regime. Internal report, Federal Institute of Snow and Avalanche Research, Weissfluhjoch, Davos.

    Google Scholar 

  • Hutter, K, 1991; Two-and three-dimensional evolution of granular avalanche flow–theory and experiments revisited, Acta Mechanica, [Suppl.), 1, 167–181.

    Article  Google Scholar 

  • Hutter, K. and Greve, R., 1993; Two-dimensional similarity solutions for finite mass granular avalanches with Coulomb and viscous-type frictional resistance, J. Glaciology (in press)

    Google Scholar 

  • Hutter, K. and Koch, T., 1991; Motion of a granular avalanche in an exponentially curved chute: experiments and theoretical predictions. Phil. Trans. R. Soc. London, A 334, 93–138.

    Article  Google Scholar 

  • Hutter, K. and Nohguchi, Y.,1990; Similarity solutions for a Voellmy model of snow avalanches with finite mass. Acta Mechanica, 82, 99–127.

    Article  Google Scholar 

  • Hutter, K., Szidarovsky, F. and Yakowitz, S.,1986a; Plane steady shear flow of a cohesionless granular material down an inclined plane: a model for flow avalanches, Part I. Theory. Acta Mechanica, 63, 87–112

    Article  Google Scholar 

  • Hutter, K., Szidarovsky, F. and Yakowitz, S.,1986b; Plane steady shear flow of a cohesionless granular material down an inclined plane: a model for flow avalanches, Part II. Numerical results. Acta Mechanica, 65, 239–261

    Article  Google Scholar 

  • Hutter, K., Koch, T., Plüss, C. and Savage, S. B.,1993; Dynamics of avalanches of granular materials from initiation to runout, Part II. Laboratory experiments, Acta Mechanica, (in press)

    Google Scholar 

  • Hutter, K., Siegel, M., Savage, S. B. and Nohguchi, Y.,1993; Two dimensional spreading of a granular avalanche down an inclined plane. Part I, Theory. Acta Mechanica, 100, 37–68

    Article  Google Scholar 

  • Jenkins J. T. and Cowin, S. C., 1979; Theories for flowing granular materials, in: Cowin, S. C., (ed.), Mechanics Applied to the Transport of Bulk Materials, ASME AMD-31,79–89

    Google Scholar 

  • Jenkins, J. T. and Richman,W. M. 1985a; Grad?s 13-Moment system for a dense gas of inelastic spheres, Arch. Rat. Mech. Anal., 87, 355–377

    Article  Google Scholar 

  • Jenkins, J. T. and Richman,W. M. 1985b; Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks, Phys. Fluids, 28, 3485–3494.

    Article  Google Scholar 

  • Jenkins, J. T. and Savage, S. B., 1983; A theory for rapid flow of identical smooth nearly elastic particles, J. Fluid Mech., 130, 187–202.

    Article  Google Scholar 

  • Johnson, P. C. and Jackson, R., 1986; Frictional-collisional constitutive relations for granular materials with application to plane shearing, J. Fluid Mech., 176, 67–93

    Article  Google Scholar 

  • Johnson, P. C. Nott, P. and Jackson, R., 1990; Frictional-collisional equations of motion for particulate flows and their application to chutes, J. Fluid Mech., 210, 501–535

    Article  Google Scholar 

  • Kent, P. E., 1986; The transport mechanisms of catastrophic rockfalls, J. Geol., 74, 79–83.

    Article  Google Scholar 

  • Knapp, R. T., 1938; Energy balance in streams carrying suspended load, Trans. A. G. U. 1, 501–505

    Google Scholar 

  • Koch, T., 1989; Bewegung einer Granulatlawine entlang einer gekrümmten Bahn. Diplomarbeit, Technische Hochschule Darmstadt, 172 pp

    Google Scholar 

  • Koch, T., 1993; Bewegungf einer granularen Lawine auf einer geneigten und gekrümmten Fläche. Entwicklung und Anwendung eines theoretisch numerischen Verfahrens und dessen Überprüfung urch Laborexperimente. Doctoral dissertation, Technische Hochschule Darmstadt

    Google Scholar 

  • Koch, T., Greve, R, and Hutter K., 1994; Unconfined flow of granular avalanches along a partly curved surface. Part II: Experiments and numerical computations, Proc. R. Soc. London, A 445, 415–435

    Google Scholar 

  • Kolmogorov, A., 1941; The local structure of turbulence in incompressible viscous fluids for very large Reynolds numbers, Comptes rend. de l’Acad. des Sci. de l’URSS, 30, 301–305

    Google Scholar 

  • Lang, R., 1992; An experimental and analytical study on gravity driven free surface flows of cohesionless granular media, Dr. rer. nat. Dissertation, Technische Hochschule Darmstadt.

    Google Scholar 

  • Lang, R., Leo, B. and Hutter, K. 1989; Flow characteristics of an unconstrained non-cohesive granular medium down an inclined, curved surface: Preliminary experimental results, Annals of Glaciology, 13, 146–153

    Google Scholar 

  • Lang, T. E., Dawson, K. L. and Martinelli, Jr. M., 1979; Application of numerical transient fluid dynamics to snow avalanche flow. Part I. Development of computer program AUALNCH, J. Glaciology, 22 (86), 117–126

    Google Scholar 

  • Lang, T. E., Dawson, K. L. and Martinelli, Jr. M., 1979; Application of numerical transient fluid dynamics to snow avalanche flow. Part II. Avalanche modelling and parameter error evaluation, J. Glaciology, 22 (86), 107–115

    Google Scholar 

  • Launder, B., E. and Spalding, D., B., 1974; The numerical computation of turbulent flows, Computational Methods in Applied Mechanics and Engineering, 3, 269–289

    Article  Google Scholar 

  • Li Tianchi, 1983; A mathematical model for predicting the extent of a major rockfall, Z. Geomorph., 27, 473–482.

    Google Scholar 

  • Lucchitta, B. K. 1978; Large landslide on Mars. Geol. Soc. Amer. Bull., 89, 1601–1609

    Article  Google Scholar 

  • Lun, C. K. K., Savage, S. B., Jeffrey, D. J. and Chepurniy, N., 1984; Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech., 140, 223–256

    Article  Google Scholar 

  • Martinelli, M., Jr., Lang, T. E. and Mears, A. I., 1980; Calculation of avalanche friction coefficients from field data. J. Glaciology, 26, (94) 109–119.

    Google Scholar 

  • Mathieu, J. and Tailland, A., 1965; Jet pariétal, C. R. Acad. Sci. Paris, 261, 2282–2285

    Google Scholar 

  • Mellor, M., 1978; Dynamics of snow avalanches, in: Rockslides and Avalanches, 1, Natural Phenomena ( B. Voight, ed.), Elsevier Sci. Publ.Co, Amsterdam, 753–792

    Google Scholar 

  • Martinet, G., 1992; Contribution à la modélisation numérique des avalanches de neige dense et des laves toorentielles, Th `se, Université Joseph Fourier I, Grenoble, pp. 1–218

    Google Scholar 

  • McClung, D. and Schaerer, P. A., 1988; Determination of avalanche dynamics, friction coefficients from measured speeds, J. Glaciology, 20, (94) 109–120

    Google Scholar 

  • McSaveney, M. J. 1978; Sherman Glacier rock avalanche, Alaska, U.S.A, in: Voight, B., (ed.), Rockslides and Avalanches, Vol 1 (elsevier), 197–258.

    Google Scholar 

  • McTigue, D. F., 1979; A nonlinear continuum theory for flowing granular materials. Ph. D. Dissertation, Department of Geology, Stanford University.

    Google Scholar 

  • Melosh, J., 1986; The physics of very large landslides, Acta Mechanica, 64, 89–99

    Article  Google Scholar 

  • Middleton, G. V., 1966; Experiments on density and turbidity currents, Canadian Journal of Earth Sciences, 3, 523–546

    Article  Google Scholar 

  • Middleton, G. V. and Hampton, M. A., 1976; Subaqueous sediment transport and deposition by sediment gravity flows, in: Stanley, D. J. and Swift, D. J. P., (eds.), Marine sediment transport and environmental management ( Wiley, New York ), 197–218.

    Google Scholar 

  • Morton, B. R., Taylor, G. I. and Turner, J. S., 1956; Turbulent gravitational convection from maintained and instantaneous sources, Proc. Roy. Soc. London, A 234, 1–23

    Article  Google Scholar 

  • Myers, G. E., Schauer, J. J. and Eustis, R. H., 1961; The plane turbulent wall jet. 1 Jet development and friction factor. Tech Rep. No 1 Department of Mech. Engng. Stanford University

    Google Scholar 

  • Nohguchy, Y., Hutter, K. and Savage, S. B., 1989; Similarity solutions for granular avalanches of finite mass with variable bed friction, Continuum Mech. Thermodyn., 1, 239–265

    Article  Google Scholar 

  • Norem, H., Irgens, F. and Schieldrop, B., 1987; A continuum model for calculating snow avalanches, in: Salm, B. and Gubler, H., (eds.), Avalache Formation, Movement and Effects (IAHS Publ. No. 126 ), 363–379.

    Google Scholar 

  • Parker, G., 1982; Conditions for the ignition of catastrophically erosive turbidity currents, Mar. Geol., 46, 307–327

    Article  Google Scholar 

  • Parker, G., Fukushima, Y. and Pantin, H. M., 1986; Self-accelerating turbidity currents, Journal of Fluid Mechanics, 171, 145–181

    Article  Google Scholar 

  • Perla, R., 1980; Avalanche release, motion and impact, in: Dynamics of Snow and Ice Masses ( S. C. colbeck, ed.), Academic Press, New York, 397–462

    Google Scholar 

  • Perla, R. and Martinelli, M., 1978; Avalanche Handbook, U.S. Department of Agriculture Forest Service, Agriculture Handbook, 489 pp.

    Google Scholar 

  • Perla, R., Cheng, T. T. and McClung, D. M., 1980; A two parameter model of snow avalanche motion, Journal of Glaciology, 26, Nr. 94, 197–202

    Google Scholar 

  • Plapp, J. E. and Mitchell, J. P., 1960; A hydrodynamic theory of turbidity currents, J. Geophys. Res., 65, 983–992

    Article  Google Scholar 

  • Plüss, C., 1987; Experiments on granular avalanches, Diplomarbeit, Abt XD, Eidg. Tech. Hochschule, Zürich, 113 pp.

    Google Scholar 

  • Prandtl, L., Oswatitsch, K. und Wieghardt, K., 1984; Führer durch die Strömungslehre, Verlag Vieweg

    Google Scholar 

  • Rajaratnam, N. 1976; Turbulent Jets, Elsevier

    Google Scholar 

  • Reynolds, O., 1885; On the dilatancy of media composed of rigid particles in contact. Phil. Mag Ser. 5, 20, 469–481

    Article  Google Scholar 

  • Richman, M. W. and Marciniec, R. P., 1990; Gravity-driven granular flows of smooth, inelastic spheres down bumpy inclines, Transactions ASME,, 57, 1036–1043

    Article  Google Scholar 

  • Rodi, W., 1985; Calculation of stably stratified shear-layer flows with a buoyancy-extended k-c turbulence model. In Turbulence and Diffusion in Stable Environments, edited by J. C. R. Hunt, Clarendon Press, Oxford

    Google Scholar 

  • Salm, B., 1966; Contribution to avalanche dynamics, International Symposium on Scientific Aspects of Snow and Ice Avalanches (Proceedings of the Davos Symposium, 5–10 April 1965): IAHS Publ. No. 69, 199–214

    Google Scholar 

  • Salm, B., 1968; On nonuniform, steady flow of avalanching snow, Union de Géodesie et Géophysique Internationale, Association Internationale d’Hydrologie Scientifique, Assembles générale de Berne, 25 Sept - 7 Oct 1967 (Commission de Neiges et Glaces), Rapports et discussions, 19–29, (Publication No. 79 de l’Association Internationale d’Hydrologic Scien-tifique)

    Google Scholar 

  • Salm, B. and Gubler, H.-U., 1987; Avalanche formation, movement and effects, Proceedings of the Davos-symposium, 14–19 September 1986. IAHS-Publication No. 162, 1–686

    Google Scholar 

  • Savage, S. B., 1979; Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech., 92, 53–96

    Article  Google Scholar 

  • Savage, S. B., 1983; Granular flows down rough inclines–Review and extension, in: Jenkins, J. T. and Satake, M., (eds.), Mechanics of Granular Materials: New Models and Constitutive Relations (Elsevier), 261–282

    Google Scholar 

  • Savage, S. B., 1989; Flow of granular materials, in: Germain., P., Piau, M. and Caillerie, D. (eds), Theoretical and Applied Mechanics, Elsevier, 241–266

    Google Scholar 

  • Savage, S. B. and Hutter, K., 1989: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech., 199, 177–215

    Article  Google Scholar 

  • Savage, S. B. and Hutter, K., 1991; The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis. Acta Mechanica, 86, 201–223.

    Article  Google Scholar 

  • Savage, S. B. and Jeffrey, D. J., 1981; The stress in a granular flow at high shear rates. J. Fluid Mech., 110, 255–272.

    Article  Google Scholar 

  • Savage, S. B. and McKeown, S. 1983; Shear stresses developed during rapid shear of dense concentrations of large spherical particles between concentric rotating cylinders. J. Fluid Mech., 127, 453–472

    Article  Google Scholar 

  • Savage, S. B. and Nohguchi, Y., 1988; Similarity solutions for avalanches of granular materials down curved beds. Acta Mechanica, 75, 153–174.

    Article  Google Scholar 

  • Savage, S. B. and Sayed, 1984; Stresses developed by dry cohesionless granular materials sheared in an annular shear cell. J. Fluid Mech. 142, 391–430.

    Article  Google Scholar 

  • Schaerer, P. A., 1975; Friction coefficients and speed of flowing avalanches, Symposium Mecanique de la Neige, Actes. du Colloque de Grindelwald, Avril, 1974, IAHS-AISH Publ. 114, 425–32

    Google Scholar 

  • Scheidegger, E., 1975; Physical aspects of natural catastrophes, Elsevier

    Google Scholar 

  • Scheiwiller, T. and Hutter, K., 1982; Lawinendynamik: Ubersicht über Experimente und theoretische Modelle von Flie?- und Staublawinen, Laboratory of Hydraulics, Hydrology and Glaciology, Report No. 58, ETH Zürich, Switzerland

    Google Scholar 

  • Scheiwiller, T., Hutter, K. and Hermann, F., 1987, Dynamics of powder snow avalanches, Annales Geophysicae, Nr. 5B (6), 569–588

    Google Scholar 

  • Scheiwiller, T., 1985; KANTAVAL, a set of PASCAL-computer programs for the calculation of plane steady turbulent gravity-driven dispersed two-phase flow. Int. Report of the Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zürich

    Google Scholar 

  • Scheiwiller, T., 1986; Dynamics of powder snow avalanches, Diss. ETH Nr. 7951, Mitteilung Nr. 81 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, 1–115

    Google Scholar 

  • Scheiwiller, T., Bucher, C., Hermann, F., 1985; Laboratory simulation of powder-snow avalanches, Int. Report No. 79 of the Laboratory of Hydraulics„ Hydrology and Glaciology, ETH Zürich

    Google Scholar 

  • Schwarz, W. H. and Cosart, W. P. 1961; The two dimensional wall jet. J. Fluid Mech., 10, 481–495

    Article  Google Scholar 

  • Shreve, R. L., 1966; Sherman landslide, Alaska, Science, 154, 1639–1643.

    Google Scholar 

  • Shreve, R. L., 1968: The Blackhawk landslide, Geol. Soc. Amer., Spec. paper, 108, 47 pp.

    Google Scholar 

  • Sigalla, A. 1958; Measurements of skin friction in a plane turbulent wall jet. J. R. Aeronaut. Soc., 62, 873–877.

    Google Scholar 

  • Simpson, J. E., 1972, Effects of the lower boundary on the head of a gravity current. Journal of Fluid Mechanics, 53, 759–768

    Article  Google Scholar 

  • Simpson, J. E., 1982; Gravity currents in the laboratory, atmosphere and ocean, Ann. Rev. Fluid Mech., 14,, 213–234

    Google Scholar 

  • Simpson, J. E., 1987; Gravity currents in the environment and the laboratory, Ellis Horwood Ltd., Publ., Chichester

    Google Scholar 

  • Spalding, D., B. 1982; Turbulence modelling: solved and unsolved problems, CHAM Ltd., Technical Report TR/58b, Appendix 2, London.

    Google Scholar 

  • Stadler, R. 1986; Stationäres, schnelles Fliessen von dicht gepackten, trockenen undfeuchten Schüttgütern, Dr.-ing Dissertation, Universität Karlsruhe, Deutschland.

    Google Scholar 

  • Tesche, T. W., 1986; Sensitivity analysis of the AVALANCHE simulation model, Alpine Geophysics, Inc., Report No. AGI-86/010, Placeville, CA

    Google Scholar 

  • Tesche, T. W., 1987; A three-dimensional dynamic model of turbulent avalanche flow. Paper presented at the International Snow Sciences Workshop, Lake Tahoe, California, October 22–25, 1986, pp. 111–137

    Google Scholar 

  • Tochon-Danguy, J.-C. and Hopfinger, E. J., 1975; Simulation of the dynamics of powder avalanches, (Union Géodesique et Géophysique Internationale, Association Internationale des Sciences Hydrologiques, Commission des Neiges et Glaces), Mecanique de la neige, Actes du colloque de Grindelwald, Avril, 1974, 369–80 ( IAHS-AISH, Publ. No. 114 )

    Google Scholar 

  • Tochon-Danguy, J.-C., 1977; Etude des courants de gravité sur forte pente avec application aux avalanches poudreuses, Thèse, Grenoble

    Google Scholar 

  • Tsang, G and Wood, I. R., 1968; Motion of two-dimensional starting plume. J. Engng. Mech. Div. A.S.C.E. EM6, 1547–156

    Google Scholar 

  • Vila, J.-P., 1986; Sur la théorie et l’approximation numérique de problèmes hyperboliques non linéaires, applications aux équations de Saint Venant et à la modélisation des avalanches de neige dense, Thèse, Université Paris VI, pp. 1–481

    Google Scholar 

  • Voellmy, A., 1955; Über die Zerstörungskraft von Lawinen, Schweizerische Bauzeitung, Jahrg. 73, Hf 12, 159–62, (English translation: On the destructive force of avalanches, U.S. Department of Agriculture, Forest Service, Alta Avalanche Study Center Translation No. 2, 1964 )

    Google Scholar 

  • Wood I. R., 1965; Studies in unsteady self-preserving turbulent flows. University of New South Wales, Austral. Water Res. Lab. Rep. No. 81.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hutter, K. (1996). Avalanche Dynamics. In: Singh, V.P. (eds) Hydrology of Disasters. Water Science and Technology Library, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8680-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8680-1_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4715-1

  • Online ISBN: 978-94-015-8680-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics