Structures, Suppes Predicates, and Boolean-Valued Models in Physics

  • N. C. A. da Costa
  • F. A. Doria
Part of the Synthese Library book series (SYLI, volume 257)


An old and important question concerning physical theories has to do with their axiomatization [47]. The sixth problem in Hilbert’s celebrated list of mathematical problems deals with its desirable (or ideal) contours [31]:


Physical Theory Polish Space Strange Attractor Semi Group Complete Boolean Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Albeverio, J. E. Fenstad, R. Høegh-Krohn, T. Lindstrom. Nonstandard Methods in Stochastic Analysis and Mathematical Physics. Academic Press, 1986.Google Scholar
  2. [2]
    V. I. Arnol’d. Problems of Present Day Mathematics, XVII (Dynamical systems and differential equations). Proc. Symp. Pure Math. 28, 59, 1976.Google Scholar
  3. [3]
    W. Arveson. An Invitation to C* Algebras. Springer, 1976.Google Scholar
  4. [4]
    J. D. Barrow. Phys. Rep 85, 1, 1982.CrossRefGoogle Scholar
  5. [5]
    N. Bourbaki. Theory of Sets. Hermann & Addison-Wesley, 1968.Google Scholar
  6. [6]
    J. D. Bell. Boolean-Valued Models and Independence Proofs in Set Theory. Clarendon Press, Oxford, 1984.Google Scholar
  7. [7]
    P. A. Benioff. J. Math. Phys 32, 618, 1976.CrossRefGoogle Scholar
  8. [8]
    P. A. Benioff. J. Math. Phys 32, 629, 1976.CrossRefGoogle Scholar
  9. [9]
    J. Casti. Reality Rules, I and II. John Wiley, 1992.Google Scholar
  10. [10]
    N. C. A. da Costa and R. Chuaqui. Erkenntnis 29, 95, 1988.CrossRefGoogle Scholar
  11. [11]
    N. C. A. da Costa and F. A. Doria. Suppes Predicates for Classical Physics. In J. Echeverría et al., eds., The Space of Mathematics. de Gruyter, 1992.Google Scholar
  12. [12]
    N. C. A. da Costa and F. A. Doria. Int. J. Theor. Phys 30, 1041, 1991.CrossRefGoogle Scholar
  13. [13]
    N. C. A. da Costa and F. A. Doria. Found. Phys. Letters, 4, 363, 1991.CrossRefGoogle Scholar
  14. [14]
    N. C. A. da Costa and F. A. Doria. Philosophica, 50, 901, 1992.Google Scholar
  15. [15]
    N. C. A. da Costa and F. A. Doria. Suppes Predicates and the Construction of Unsolvable Problems in the Axiomatized Sciences. In P. Humphreys, ed., Patrick Suppes, Scientific Philosopher, II, Kluwer, 1994.Google Scholar
  16. [16]
    N. C. A. da Costa and F. A. Doria. On Arnol’d’s Hilbert Symposium Problems. In G. Gottlob, A. Leitsch, D. Mundici, eds., Proceedings of the 1993 Kurt Gödel Colloquium: Computational Logic and Proof Theory, Lecture Notes in Computer Science 713. Springer, 1993.Google Scholar
  17. [17]
    N. C. A. da Costa and F. A. Doria. Int. J. Theor. Phys, 33, 1913, 1994.CrossRefGoogle Scholar
  18. [18]
    N. C. A. da Costa and F. A. Doria. Gödel incompleteness in analysis, with an application to the forecasting problem in the social sciences. Philosophia Naturalis, 31, I, 1994.Google Scholar
  19. [19]
    N. C. A. da Costa and F. A. Doria. Gödel Incompleteness, Explicit Expressions for Complete Arithmetic Degrees and Applications. To appear in Complexity, 1995.Google Scholar
  20. [20]
    N. C. A. da Costa and F. A. Doria. From the Halting Function to Set-Theoretic Forcing. Preprint, 1995.Google Scholar
  21. [21]
    N. C. A. da Costa, F. A. Doria and J. A. de Banos. Int. J. Theor. Phys, 29, 935, 1990.CrossRefGoogle Scholar
  22. [22]
    N. C. A. da Costa, F. A. Doria and A. F. Furtado do Amaral. Int. J. Theor. Phys, 32, 2187, 1993.CrossRefGoogle Scholar
  23. [23]
    N. C. A. da Costa, F. A. Doria, A. F. Furtado do Amaral and J. A. de Barros. Found. of Phys, 24, 783, 1994.CrossRefGoogle Scholar
  24. [24]
    N. C. A. da Costa, F. A. Doria and J. A. de Barros. A Formally Undecidable Statement in Classical Electromagnetic Theory. In C. A. Bertulani and J. Lopes Neto, eds., Encontro de Fisica Teorica do Rio de Janeiro—Homenagem Póstuma ao Prof. Carlos Marcio do Amaral. UFRJ, 1990.Google Scholar
  25. [25]
    N. C. A. da Costa, E. A. Doria and J. A. de Banos. `Suppes Randomness in Arbitrary Spaces. Preprint, preliminary version, 1990.Google Scholar
  26. [26]
    E A. Doria. J. Math. Phys, 18, 564, 1977.CrossRefGoogle Scholar
  27. [27]
    F. A. Doria. A Bifurcation Set Associated to the Copy Phenomenon in the Space of Gauge Fields. In G. I. Zapata, ed., Functional Analysis, Holomorphy and Approximation Theory II. North-Holland, 1984.Google Scholar
  28. [28]
    E A. Doria, S. M. Abrahâo and A. E F. do Amaral. Progr. Theor. Phys, 75, 1440, 1986.CrossRefGoogle Scholar
  29. [29]
    G. G. Emch. Mathematical and Conceptual Foundations of 20th Century Physics. North-Holland, 1984.Google Scholar
  30. [30]
    J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, 1983.Google Scholar
  31. [31]
    D. Hilbert. Mathematical Problems. In F. E. Browder, ed., Mathematical Developments Arising from the Hilbert Problems. Proc. Symp. Pure Math. 28, AMS, 1976.Google Scholar
  32. [32]
    M. W. Hirsch. The Chaos of Dynamical Systems. In P. Fischer and W. R. Smith, editors, Chaos, Fractals and Dynamics. Marcel Dekker, 1985.Google Scholar
  33. [33]
    T. Jech. Set Theory. Academic Press, 1978.Google Scholar
  34. [34]
    K. Kunen. Set Theory. North-Holland, 1983.Google Scholar
  35. [35]
    C. A. Lungarzo. Superposition of States in Quantum Logic from a Set-Theoretical Point of View. In A. I. Arruda, N. C. A. da Costa and R. Chuaqui, eds., Mathematical Logic—Proceedings of the First Brazilian Conference, Lecture Notes in Pure and Applied Math. Marcel Dekker, 1976.Google Scholar
  36. [36]
    D. Ornstein and B. Weiss. Israel J. Math, 14, 185, 1973.CrossRefGoogle Scholar
  37. [37]
    J. C. Oxtoby. Measure and Category. Springer, 1980.Google Scholar
  38. [38]
    M. B. Pour-El and I. Richards. Adv. Math, 39, 215, 1981.CrossRefGoogle Scholar
  39. [39]
    J. R. Shoenfield. Amer. Math. Monthly, 82, 610, 1975.CrossRefGoogle Scholar
  40. [40]
    R. M. Solovay. Ann. Math, 92, 1, 1970.CrossRefGoogle Scholar
  41. [41]
    I. Stewart. Nature, 352, 664, 1991.CrossRefGoogle Scholar
  42. [42]
    I. Stewart. The Problems of Mathematics, 2nd. ed. Oxford, 1992.Google Scholar
  43. [43]
    P. Suppes. Introduction to Logic. Van Nostrand, 1957.Google Scholar
  44. [44]
    P. Suppes. Set-Theoretical Structures in Science, mimeo. Stanford University, 1967.Google Scholar
  45. [45]
    P. Suppes, Scientific Structures and their Representation, preliminary version. Stanford University, 1988.Google Scholar
  46. [46]
    F. Trèves. Topological Vector Spaces, Distributions and Kernels. Academic Press, 1967.Google Scholar
  47. [47]
    A. S. Wightman. Hilbert’s Sixth Problem: Mathematical Treatment of the Axioms of Physics. In E E. Browder, ed., Mathematical Developments Arising from the Hilbert Problems,Proc. Symp. Pure Math. 28 AMS, 1976 Google Scholar
  48. [48]
    S. Wolfram. Commun. Math. Phys,96 15, 1984.Google Scholar
  49. [49]
    J. D. Maitland Wright. Bull. AMS, 79, 1247, 1973.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • N. C. A. da Costa
  • F. A. Doria

There are no affiliations available

Personalised recommendations