Advertisement

Axiomatic Rejection for Classical Propositional Logic

  • Arata Ishimoto
Chapter
Part of the Synthese Library book series (SYLI, volume 257)

Abstract

Axiomatic rejection is a method to recursively enumerate all the formulas not provable in the given formal system by way of a recursive set of axioms and rules, not necessarily finite.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. L. Clark. Negation as Failure, Logic and Data Bases, New York, 1978.Google Scholar
  2. [2]
    V. K. Härtig. Zur Axiomatisierung der Nicht-Identitäten des Aussagenkalküls, Zeitschrift für Math. Logik und Grundlagen der Math., 6, 1960.Google Scholar
  3. [3]
    K. J. J. Hintikka. Form and quantification theory. Acta Philosophica Fennica, 8, 1955.Google Scholar
  4. [4]
    T. Inoué. On Ishimoto’s theorem in axiomatic rejection. Philosophy of Science, Japan,22, 1989. (In Japanese)Google Scholar
  5. [5]
    T. Inoué, A. Ishimoto and M. Kobayashi. Axiomatic rejection for the propositional fragment of Lesniewski’s ontology. Forthcoming.Google Scholar
  6. [6]
    A. Ishimoto. The method of axiomatic rejection in classical propositional logic and its applications. The Logic of Natural Language,1990. (In Japanese)Google Scholar
  7. [7]
    N. Kanai. The Gentzen-type formulation of syllogistic and its completeness with respect to first-order predicate logic. The Logic of Natural Language,1990. (In Japanese)Google Scholar
  8. [8]
    M. Kobayashi and A. Ishimoto. A propositional fragment of Lesniewski’s ontology and its formulation by the tableau method. Studia Logica, 41, 1982.Google Scholar
  9. [9]
    J. Łukasiewicz. Aristotle’s syllogistic from the standpoint of modern formal logic, second edition, Oxford, 1957.Google Scholar
  10. [10]
    K. Shütte. Beweistheorie, Berlin-Heidelberg, 1957.Google Scholar
  11. [11]
    K. Shütte. Volständige System Modaler und Intuititionistischer Logik, Berlin-Heidelberg, 1968.Google Scholar
  12. [12]
    K. Shütte. Proof theory, Berlin-Heidelberg, 1978.Google Scholar
  13. [13]
    S. Shimidzu. The Logical Structure of Parsing, Memoirs of Iwaki Junior College,13 1987. (In Japanese)Google Scholar
  14. [14]
    J. Slupeci. Badan nad sylogistica Aristoteles. Traveaux de la Société des Sciences eet des Lettres de Wroclaw, 9, 1948.Google Scholar
  15. [15]
    J. Slupecki, G. Bryll and Wybraniec—Skardowska. Theory of rejected propositions. Studia Logica, 24, 1971, and Traveaux de la Société des Sciences eet des Lettres de Wroclaw, 30, 1972.Google Scholar
  16. [16]
    R. M. Symullyan. First-Order Logic, Berlin-Heidelberg-New York, 1968.Google Scholar
  17. [17]
    W. Staszek. A certain interpretation of the theory of rejected propositions. Studia Logica, 30, 1972.Google Scholar
  18. [18]
    J. Wolenski. Logic and Philosophy in the Lvov-Warsaw School. Kluwer, Dordrecht, 1989. (Polish edition, 1985.)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Arata Ishimoto

There are no affiliations available

Personalised recommendations