Advertisement

A Logic Without Fixed Points

  • A. S. Karpenko
Part of the Synthese Library book series (SYLI, volume 257)

Abstract

To approach this kind of logic, let us begin with what might seem a rather farfetched problem, namely: the interrelations of Lukasiewicz’s matrix many valued logic [9] and Gödel’s matrix many-valued logic [5] which happens to be a generalization of Heyting’s matrix three- valued logic (see [15, p. 45]).

Keywords

Intuitionistic Logic Modus Ponens Heyting Algebra Implication Algebra Sentential Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. C. Chang. Algebraic analysis of many-valued logic. Transactions of the American Mathematical Society, 88, 467–490, 1958.CrossRefGoogle Scholar
  2. [2]
    C. C. Chang. A new proof of the completeness of the Lukasiewicz axioms. Transactions of the American Mathematical Society, 93, 74— 80, 1959.Google Scholar
  3. [3]
    R. Cignoli. Proper n-valued Lukasiewicz algebras as S-algebras of Lukasiewicz n-valued propositional calculi. Studia Logica, 41, 3–16, 1982.CrossRefGoogle Scholar
  4. [4]
    J. M. Font, A. J. Rodrigues and A. Torrens. Wajsberg algebras. Stochastica, 3, 5–31, 1984.Google Scholar
  5. [5]
    K. Gödel. Zum intuitionistischen Auussagenkalkül. Ergebnisse eines mathematischen Kolloquiums, 4, 40, 1931/2, published 1933.Google Scholar
  6. [6]
    L. Iturrioz. Symmetrical Heyting algebras with operators. Zeitschriftfü Math. Logik u. Grundl. der Mathematik, 29, 33–70, 1983.CrossRefGoogle Scholar
  7. A. S. Karpenko and V. L. Vasykov. Symmetrical Heyting monoid: a model for infinite-valued logic of Lukasiewicz, in: Non-classical Logics and Propositional Attitudes,eds V. A. Smirnov et al.,pp. 118–124, Moscow, 1987. (In Russian)Google Scholar
  8. [8]
    T. Katrinak. The structure of distributive double p-algebras. Algebra Universalis, 4, 259–267, 1974.CrossRefGoogle Scholar
  9. [9]
    J. Lukasiewicz and A. Tarski. Untersuchungen üder den Aussagenkalkül. C. R. Acad. Scie. Lett. Varsovie,23 30–50, 1930. (English translation in Selected works of J. Lukasiewicz,ed L. Borkowski, North Holland Publ. Co., Amsterdam, 1970.)Google Scholar
  10. [10]
    R. McNaughton. A theorem about infinite-valued sentential logic. The Journal of Symbolic Logic, 16, 1–13, 1951.CrossRefGoogle Scholar
  11. [11]
    Gr. Moisil. Les logiques non chrysippinnes et leurs applications. Acta Phil. Fennica, 16, 137–152, 1963.Google Scholar
  12. [12]
    D. Mundici. MV-algebras are categorically equivalent to bounded commutative BCK- algebras. Mathematical Japonica, 31, 889–894, 1986.Google Scholar
  13. [13]
    H. Rasiowa. An algebraic approach to non-classical logics.Google Scholar
  14. [14]
    C. Rauszer. Semi-Boolean algebras and their application to intuitionistic logic with dual operations. Fundamenta Mathematicae, 83, 219–29, 1974.Google Scholar
  15. [15]
    N. Rescher. Many-valued Logic. McGraw-Hill, NY, 1969.Google Scholar
  16. [16]
    J. B. Rosser and Turquette. Many-valued Logics. North-Holland, Amsterdam, 1952.Google Scholar
  17. [17]
    V. L. Vasiukow. The completeness of Łx0„ under a factor-semantic. In Nonclassical Logics and its Applications,pp. 56–68, eds V. A. Smirnov et al.,Moscow, 1989. (In Russian)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • A. S. Karpenko

There are no affiliations available

Personalised recommendations