Skip to main content

Total Positivity and Splines

  • Chapter

Part of the book series: Mathematics and Its Applications ((MAIA,volume 359))

Abstract

This paper gives a review of univariate splines and B-splines, with special emphasis on total positivity. In particular, we show that the B-spline basis is totally positive, and we give a proof of the SchoenbergWhitney theorem by first establishing the result for the so-called truncated power basis. One consequence of total positivity is the existence of the Chebyshev spline which is a generalization of the Chebyshev polynomial. This spline has many nice properties, and we study some of these at the end of the paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arge, E., M. Dæhlen, T. Lyche, and K. Mørken, Constrained spline approximation of functions and data based on constrained knot removal, in Algortihms for Approximation II, J. C. Mason and M. G. Cox (eds.), Chapman & Hall, London, 1990, 4–20.

    Google Scholar 

  2. Böhm, W., Inserting new knots into B-spline curves, Comput. Aided Design 12 (1980), 199–201.

    Article  Google Scholar 

  3. de Boor, C., On calculating with B-splines, J. Approx. Th. 6 (1972), 50–62.

    Article  MATH  Google Scholar 

  4. de Boor, C., On bounding spline interpolation, J. Approx. Th. 14 (1975), 191–203.

    Article  MATH  Google Scholar 

  5. de Boor, C., Total positivity of the spline collocation matrix, Ind. U. Math. J. 25 (1976), 541–551.

    Article  MATH  Google Scholar 

  6. de Boor, C., Splines as linear combinations of B-splines, a survey, in Approximation Theory II, G. G. Lorentz, C. K. Chui and L. L. Schumaker (eds.), Academic Press, New York, 1976, 1–47.

    Google Scholar 

  7. de Boor, C., APractical Guide to Splines, Springer Verlag, New York, 1978.

    Google Scholar 

  8. de Boor, C., The exact condition of the B-spline basis may be hard to determine, J. Approx. Th. 60 (1990), 344–359.

    Article  MATH  Google Scholar 

  9. de Boor, C., and R. DeVore, A geometric proof of total positivity for spline interpolation, Math. of Comp. 45 (1985), 497–504.

    Article  MATH  Google Scholar 

  10. de Boor, C., and K. Höllig, B-splines without divided differences in (Geometric Modeling: Algorithms and New Trends, G. E. Farin (ed.), SIAM Publications, Philadelphia, 1987, 21–27.

    Google Scholar 

  11. de Boor, C., K. Höllig, and S. D. Riemenschneider, Box Splines, Springer-Verlag, New York, 1993.

    Book  MATH  Google Scholar 

  12. de Boor, C., and A. Pinkus, Backward error analysis for totally positive linear systems, Numer. Math. 27 (1977), 485–490.

    Article  MATH  Google Scholar 

  13. Carnicer, J. M., and J. M. Pena, Totally positive bases for shape pre-serving curve design and optimality of B-splines, to appear in Computer-Aided Geom. Design .

    Google Scholar 

  14. Cheney, E. W.,Introduction to Approximation Theory, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  15. Cohen, E., T. Lyche, and R. Riesenfeld, Discrete B-splines and subdivi-sion techniques in computer-aided geometric design and computer graph-ics, Computer Graphics and Image Processing 14 (1980), 87–111.

    Article  Google Scholar 

  16. Conte, S. D., and C. de Boor, Elementary Numerical Analysis, McGraw-Hill, New York, 3. ed, 1980.

    MATH  Google Scholar 

  17. Cox, M. G., The numerical evaluation of B-splines, J. Inst. Maths. Appl. 10 (1972), 134–149.

    Article  MATH  Google Scholar 

  18. Curry, H. B., and I. J. Schoenberg, On Pólya frequency functions IV: The fundamental spline functions and their limits, J. Analyse Math. 17 (1966), 71–107.

    Article  MathSciNet  MATH  Google Scholar 

  19. Dahmen, W., Subdivision algorithms converge quadratically, J. Comput. Appl. Math. 16 (1986), 145–158.

    Article  MathSciNet  MATH  Google Scholar 

  20. Dahmen, W., C. A. Micchelli, and H. P. Seidel, Blossoming begets B-spline bases built better by B-patches, Math. Comp. 59 (1992), 97–115.

    MathSciNet  MATH  Google Scholar 

  21. Daubechies, I., Ten Lectures on Wavelets, CBMS-61, SIAM, 1992.

    Book  MATH  Google Scholar 

  22. Demko, S., On the existence of interpolating projections onto spline spaces, J. Approx. Th. 43 (1985), 151–156.

    Article  MathSciNet  MATH  Google Scholar 

  23. Eagle, A., On the relations between Fourier constants of a periodic func-tion and the coefficients determined by harmonic analysis, Philos. Mag. 5 (1928), 113–132.

    MATH  Google Scholar 

  24. Farin, G., Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, 3. ed., 1992.

    Google Scholar 

  25. Farouki, R. T. , and T. N. T. Goodman, On the optimal stability of the Bernstein basis, preprint.

    Google Scholar 

  26. Gasca, M., and J. M. Peña, Scaled pivoting in Gauss and Neville elimination for totally positive systems, Appl. Numer. Math. 13 (1993), 345–355.

    Article  MathSciNet  MATH  Google Scholar 

  27. Goodman, T. N. T., New bounds on the zeros of spline functions, J. Approx. Th. 76 (1994) , 123–130.

    Article  MATH  Google Scholar 

  28. Holladay, J. C., A smoothest curve approximation, Math. Tables Aids Computation 11 (1957), 233–243.

    Article  MathSciNet  MATH  Google Scholar 

  29. Jones, R. C., and L. A. Karlovitz, Equioscillation under nonuniqueness in the approximation of continuous functions, J. Approx. Th. 3 (1970), 138–145.

    Article  MathSciNet  MATH  Google Scholar 

  30. Karlin, S., Total Positivity, Stanford Univ. Press, Stanford, 1968.

    MATH  Google Scholar 

  31. Karlin, S., and Z. Ziegler, Chebyshevian spline functions, J. SIAM Numer. Anal. 3 (1966), 514–543.

    Article  MathSciNet  MATH  Google Scholar 

  32. Lyche, T., and K. Mørken, A data reduction strategy for splines, IMA J. Numer. Anal. 8 (1988), 185–208.

    Article  MathSciNet  MATH  Google Scholar 

  33. Marsden, M. J., An identity for spline functions with applications to variation-diminishing spline approximation; J. Approx. Th. 3 (1970), 7–49.

    Article  MathSciNet  MATH  Google Scholar 

  34. Micchelli, C. A., On a numerically efficient method for computing multivariate B-splines, in Multivariate Approximation Theory, W. Schemp and K. Zeller (eds.), Birkhäuser, Basel, 1979, 211–248.

    Google Scholar 

  35. Micchelli, C. A., Mathematical Aspects of Geometric Modeling, CBMS65, SIAM, 1995.

    Book  MATH  Google Scholar 

  36. Mørken, K., On two topics in spline theory: Discrete splines and the equioscillating spline, Master’s thesis, Univ. of Oslo, Dept. of Informatics, 1984.

    Google Scholar 

  37. Mørken, K., On total positivity of the discrete spline collocation matrix, submitted to J. Approx. Th.

    Google Scholar 

  38. Mørken, K.,, and K. Scherer, A general framework for high accuracy parametric interpolation, Preprint 1994–7, Univ. of Oslo, Dept. of Informatics, 1994, submitted to Math. Comp.

    Google Scholar 

  39. Nürnberger, G., and M. Sommer, A Remez type algorithm for spline functions, Numer. Math. 41 (1983), 117–146.

    Article  MathSciNet  MATH  Google Scholar 

  40. Quade, W., and L. Collatz, Zur Interpolationstheorie der reellen periodischen Funktionen, Sitzungsber. der Preuss. Akad. Wiss., Phys. Math. 30 (1938), 383–429.

    Google Scholar 

  41. Powell, M. J. D., The theory of radial basis function approximation in 1990, in Advances in Numerical Analysis II: Wavelets, Subdivision Algori thms and Radial Functions, W. A. Light (ed.), Clarendon Press, Oxford, 1992, 105–210.

    Google Scholar 

  42. Ramshaw, L., Blossoming: a connect-the-dots approach to splines, Techn. Rep., Digital Systems Research Center, Palo Alto, 1987.

    Google Scholar 

  43. Risler, J. J., Mathematical Methods for CAD, Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  44. Scherer, K., On the condition number of the B-spline basis, submitted to J. Approx. Th.

    Google Scholar 

  45. Schoenberg, I. J., Contributions to the problem of approximation of equidistant data by analytic functions, Part A: On the problem of smoothing or graduation, a first class of analytic approximation formulas, Quart. Appl. Math. 4 (1946), 45–99.

    MathSciNet  Google Scholar 

  46. Schoenberg, I. J., Cardinal Spline Interpolation, CBMS-12, SIAM, Philadelphia, 1973.

    Book  MATH  Google Scholar 

  47. Schoenberg, I. J., and A. Whitney, On Pólya frequency functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves, Trans. Amer. Math. Soc. 74 (1953), 246–259.

    MathSciNet  MATH  Google Scholar 

  48. Schumaker, L. L., Spline Functions: Basic Theory, John Wiley, New York, 1981.

    MATH  Google Scholar 

  49. Seidel, H.-P., A new multi-affine approach to B-splines, Computer-Aided Geom. Design 6 (1989), 23–32.

    MathSciNet  MATH  Google Scholar 

  50. Sommerfeld, A., Eine besondere anschauliche Ableitung des Gaussischen Fehlergesetzes, in Festschrift Ludwig Boltzmann Gewidmet zum Sechzigsten Geburtstage, Stefan Meyer (ed.), Verlag von J. A. Barth, Leipzig, 1904, 848–859.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mørken, K. (1996). Total Positivity and Splines. In: Gasca, M., Micchelli, C.A. (eds) Total Positivity and Its Applications. Mathematics and Its Applications, vol 359. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8674-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8674-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4667-3

  • Online ISBN: 978-94-015-8674-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics