Skip to main content

Total Positivity of the Spline Kernel and its Applications

  • Chapter
Total Positivity and Its Applications

Part of the book series: Mathematics and Its Applications ((MAIA,volume 359))

  • 575 Accesses

Abstract

We discuss here some results from Approximation Theory which are based on the total positivity of the truncated power function (x - t) r-1+ . A detailed study of the B-splines with Birkhoff’s knots is presented. Results on monosplines of minimal norm and their relation to optimal quadrature formulas are reviewed. A historical note concerning a paper of Tschakaloff from 1938 on B-splines is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson K., and A. Sharma, A partial characterization of poised Hermite — Birkhoff interpolation problems, SIAM J. Numer. Anal. 6 (1969), 230–235.

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrar, R. B., and H. Loeb, On monosplines with odd multiplicities of lest norm, J. Analyse Math. 33 (1978), 12–38.

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrar, R. B., and H. Loeb, Fundamental theorem of algebra for monosplines and related results, SIAM J. Numer. Anal. 17, 6 (1980), 874–882.

    Article  MathSciNet  Google Scholar 

  4. Birkhoff, G. D., General mean value and remainder theorems with applications to mechanical differentiation and quadrature, Trans. Amer. Math. Soc. 7 (1906), 107–136.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bojanov, B. D., Existence and characterization of monosplines of least Lp-deviation, in Constructive Function Theory 77, BAN, Sofia, 1980, pp. 249–268.

    Google Scholar 

  6. Bojanov, B., Uniqueness of the monosplines of least deviation, in Numerische Integration, G. Hämmerlin (ed), ISNM 45, Birkhäuser Verlag Basel, 1979, pp. 67–97.

    Google Scholar 

  7. Bojanov, B., Uniqueness of the optimal nodes of quadrature formulae, Math. Comp. 36, 154 (1981), 525–546.

    Article  MathSciNet  Google Scholar 

  8. Bojanov, B., On the total positivity of the truncated power kernel, Colloquium Math. vol LX/LXI (1990), 593–600.

    MathSciNet  Google Scholar 

  9. Bojanov, B., B-splines with Birkhoff knots, Constr. Approx. 4 (1988), 147–156.

    Article  MathSciNet  Google Scholar 

  10. Bojanov, B., Interpolation by periodic splines with Birkhoff knots, Numer. Math. 65 (1993), 63–75.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bojanov, B., G. Grozev and A. A. Zhensykbaev, Generalized Gaussian quadrature formulas for weak Tchebycheff systems, in Optimal Recovery of Functions, B. Bojanov and H. Wozniakowski (Eds.), Nova Science, New York, 1992, pp. 115–140.

    Google Scholar 

  12. Bojanov, B., H. Hakopian and A. Sahakian, Spline Functions and Multivariate Interpolations, Kluwer Academic Publishers, Dordrecht, 1993.

    MATH  Google Scholar 

  13. Bojanov, B., and Huang Daren, On the optimal quadrature formulas in W r q of quasi-Hermitian type, Approx. Th. & its Appl. 4, 4 (1988), 13–22.

    MATH  Google Scholar 

  14. de Boor, C., Total positivity of the spline collocation matrix, Indiana Univ. J. Math. 25 (1976), 541–551.

    MATH  Google Scholar 

  15. de Boor, C., and R. DeVore, A geometric proof of total positivity for spline interpolation, Math. Comp. 45, 172 (1985), 497–504.

    Article  Google Scholar 

  16. Huang, D., and G. Fang, Uniqueness of optimal quadrature formulas for W 1 m and the fundamental theorem of algebra for periodic monosplines, Chin. Ann. Math. 11B: 4 (1990), 426–437.

    Google Scholar 

  17. Huang, D., and G. Fang, The uniqueness of optimal quadrature formula and optimal nodes with multiplicities in L1, Approx. Th. & its Appl. 6, 2 (1990), 16–27.

    MathSciNet  Google Scholar 

  18. Jetter, K., Dual Hermite-Birkhoff Problem, J. Approx. Th. 17 (1976), 119–134.

    Article  MathSciNet  MATH  Google Scholar 

  19. Jetter, K., and G. Lange, Die eindeutigkeit L2-optimaler polynomialer monosplines, Math. Z. 158 (1978), 23–24.

    Article  MathSciNet  Google Scholar 

  20. Karlin, S., Total Positivity, Volume I, Stanford University Press, California, 1968.

    MATH  Google Scholar 

  21. Karlin, S., Total positivity, interpolation by splines and Green’s function of differential operators, J. Approx. Th. 4 (1971), 91–112.

    Article  MathSciNet  MATH  Google Scholar 

  22. Karlin, S., and C. Micchelli, The fundamental theorem of algebra for monosplines satisfying boundary conditions, Israel J. Math. 11 (1972), 405–451.

    MathSciNet  MATH  Google Scholar 

  23. Karlin, S., and W. Studden, Tchebycheff Systems: with Applications in Analysis and Statistics, Interscience Publishers, New York, 1966.

    MATH  Google Scholar 

  24. Ligun, A. A., Exact inequalities for spline functions and best quadrature formulas for certain classes of functions, Mat. Zametki 19, 6 (1976), 913–926 (in Russian).

    MathSciNet  MATH  Google Scholar 

  25. Lorentz, G. G., K. Jetter and S. Riemenschneider, Birkhoff Interpolation, Encyclopedia Math. Appl. 19, Addison-Wesley, Reading, Mass., 1983.

    MATH  Google Scholar 

  26. Meinardus, G., Bemerkungen zur Theorie der B-Splines, in Spline-Funktionen, Vorträge und Aufsätze, K. Böhmer, G. Meinardus, W. Schempp (eds.), Mannheim-Wien-Zürich: Bibliographisches Institute, 1974, pp. 165–175.

    Google Scholar 

  27. Micchelli, C. M., The fundamental theorem of algebra for monosplines with multiplicities, in Linear Operators Approximation, P. L. Butzer, J. Kahane, B. S. Nagy (Eds.), Birkhäuser, Basel, 1972, pp.419–430.

    Google Scholar 

  28. Motornii, V. P., On the best quadrature formula of type ∑k=1 n Pkf(xk) for certain classes of periodic differentiable functions. Izv. AN SSSR, Ser. Mat. 38, 3 (1974), 583–614 (in Russian).

    Google Scholar 

  29. Peano, P., Resto nelle formule dt quadratura éspresso con un integralo definito. Atti della reale Acad. del Lincei, Rendiconti 5, 22 (1913), 562–569.

    Google Scholar 

  30. Schempp, W., Complex Contour Integral Representation of Cardinal Spline Functions, Amer. Math. Society, Contemporary Mathematics, v.7, Providence, Rhode Island, 1982

    Book  MATH  Google Scholar 

  31. Tschakaloff, L., Über eine darstellung des Newtonschen differenzenquotienten und ihre anwendungen, C.R. de Congrès International des Mathématiciens, Oslo, 1936; v.II, 1937, 98–99.

    Google Scholar 

  32. Tschakaloff, L., On a representation of the Newton difference quotients and their applications, National Math. Magazine, 11(1937), 183–184.

    Article  Google Scholar 

  33. Tschakaloff, L., On a certain presentation of the Newton divided differences in interpolation theory and their applications, An. Univ. Sofia, Fiz. Mat. Facultet, 34 (1938), 353–405 (in Bulgarian).

    Google Scholar 

  34. Zhensykbaev, A. A., Best quadrature formula for certain classes of periodic functions, Izv. Acad. Nauk SSSR Ser. Mat. 41 (1977), 1110–1124 (in Russian) .

    MATH  Google Scholar 

  35. Zhensykbaev, A. A., Monosplines of minimal norm and best quadrature formulae, Uspehi Mat. Nauk 36, 4 (1981), 107–159 (in Russian); English transl.: Russ. Math. Surv. 36 (1981), 121–180.

    MathSciNet  Google Scholar 

  36. Zhensykbaev, A. A., The fundamental theorem of algebra for monosplines with multiple nodes, J. Approx. Th. 56, 2 (1989), 121–133.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bojanov, B. (1996). Total Positivity of the Spline Kernel and its Applications. In: Gasca, M., Micchelli, C.A. (eds) Total Positivity and Its Applications. Mathematics and Its Applications, vol 359. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8674-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8674-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4667-3

  • Online ISBN: 978-94-015-8674-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics