Skip to main content

Ecohydrodynamics

  • Chapter
Environmental Hydraulics

Part of the book series: Water Science and Technology Library ((WSTL,volume 19))

Abstract

Ecohydrodynamics is a relatively new branch of fluid mechanics which studies the various hydrodynamic processes affecting pollutant behavior in aquatic ecosystems. Advective transport, turbulent mixing and molecular diffusion affect the transport and fate of pollutants. Density stratification and internal waves are two important phenomena in ecohydrodynamics since they involve property and material exchange between surface and deep water masses. Changes in temperature, salinity and suspended sediment distributions can drastically affect the biotic populations of an aquatic environment. Chaotic dynamics and fractal geometry are useful tools for certain ecohydrodynamic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acton, E. (1976) “The Modelling of large eddies in two—dimensional shear layer”, Journal of Fluid Mechanics, 76(3): 561–592.

    Article  MATH  Google Scholar 

  • Apel, J.R. (1987) “Principles of Ocean Physics”, International Geophysics Series, 38, Academic Press, New York, New York.

    Google Scholar 

  • Arnold, V.I. (1989) “Ordinary Differential Equations”, The MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Atkinson, J.F. (1988) “Note on the interfacial mixing in stratified flows”, Journal of Hydraulic Research, IAHR, 26(1): 27–31.

    Article  Google Scholar 

  • Baretta, J. and Ruardij, P. (Eds.) (1988) “Tidal Flat Estuaries: Simulation and Analysis of the Elms Estuary”, Ecological Studies, 71, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Batty, M. (1991) “Cities as fractals: Simulation growth and form”, in: Fractals and Chaos(A.J. Crilly, R.A. Earnshaw and H. Jones, Eds.): 43–69, Springer-Verlag, Berlin, Germany.

    Chapter  Google Scholar 

  • Baudo, R. and Muntao, H. (1990) “Lesser known in—place pollutants and diffuse source problems”, in: Sediments: Chemistry and Toxicity of In—Place Sediments(R. Baudo, J. Giesy and H. Muntau, Eds.): 1–14, Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  • Bedient, P.B., Rifai, H.S. and Newell, C.J. (1994) “Ground Water Contamination — Transport and Remediation”, PRT Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Bergé, P., Pomeau, Y. and Vidal, C. (1984) “Order Within Chaos — Towards a Deterministic Approach to Turbulence”, John Wiley & Sons, New York, New York.

    MATH  Google Scholar 

  • Betchov, R. and Criminale, W.O., Jr. (1967) “Stability of Parallel Flows”, Academic Press, New York, New York.

    Google Scholar 

  • Bird, R.B., Steward, W.E. and Lightfoot, E.N. (1960) “Transport Phenomena”, John Wiley & Sons, New York, New York.

    Google Scholar 

  • Bretschneider, C.L. (1966) “Engineering aspects of hurricane surge”, in: Estuary and Coastline Hydrodynamics,(A.T. Ippen, Ed.), 5: 231–256, McGraw-Hill, New York, New York.

    Google Scholar 

  • Chadam, J. (1991) “Geochemical self—organization: An application of nonlinear dynamics”, in: Nonlinear Dynamics, Chaos and Fractals with Applications to Geological Systems(G.V. Middleton, Ed.): 83–96, Geological Association of Canada, Toronto.

    Google Scholar 

  • Chandrasekhar, S. (1981) “Hydrodynamic and Hydromagnetic Stability”, Dover, New York, New York.

    Google Scholar 

  • Chamley, H. (1989) “Clay Sedimentology”, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Chaudhry, M.H. (1993) “Open—Channel Flow”, Prentice Hall, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  • Cherbit, G. (1991) “Disorder, chance and fractals in biology”, in: Fractals — Non—Integral Dimensions and Applications(G. Cherbit, Ed.): 145–150, John Wiley & Sons.

    Google Scholar 

  • Chow, V.T., Maidment, D.R. and Mays, L.W. (1988) “Applied Hydrology”, McGraw—Hill, New York, New York.

    Google Scholar 

  • Dean, R.G. and Taylor, B. (1972) “Numerical Modeling of Hydrodynamics of Biscayne Bay/Card Sound System, Part II: Dispersive Characteristics”, Technical Report to Florida Power and Light Co., Department of Coastal and Oceanographic Engineering, University of Florida, Gainesville, Florida.

    Google Scholar 

  • Dermissis, V. (1977) “A Study of the Interfacial Friction Coefficients in a Two—Layer Fluid System”, Doctoral Dissertation, Aristotle University of Thessaloniki, Thessaloniki, Greece (in Greek with abstract in English).

    Google Scholar 

  • Ditoro, D.M. (1985) “A particle interaction model of reversible organic chemical sorption,”, Chemosphere, 14(10): 1503–1538.

    Article  Google Scholar 

  • Engler, R.M. (1980) “Prediction of pollution potential through geochemical and biological procedures: Development of regulatory guidelines and criteria for the discharge of dredged fill materials”, in: Contaminants and Sediments,(R.A. Baker, Ed.), I: 143–169, Ann Arbor Science Publications, Ann Arbor, Michigan.

    Google Scholar 

  • Fletcher, C.A.J. (1991) “Computational Techniques for Fluid Dynamics — Fundamentals and general Techniques”, I, 2nd Edition, Series in Computational Physics, Springer-Verlag, Berlin, Germany.

    Book  Google Scholar 

  • Frankel, E. (1995) “Ocean Environmental Management — A Primer on the Role of the Oceans and How to Maintain Their Contributions to Life on Earth”, PTR Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Girault, P. (1991) “Attractors and dimensions”, in: Fractals — Non—Integral Dimensions and Applications(G. Cherbit, Ed.): 60–82, John Wiley & Sons.

    Google Scholar 

  • Hammer, D.E. and Kadlec, R.H. (1986) “A model for wetland surface water dynamics”, Water Resources Research, 22(13): 1951–1958.

    Article  Google Scholar 

  • Harleman, D.F.R. (1966) “Diffusion processes in stratified flow”, in: Estuary and Coastline Hydrodynamics(A.T. Ippen, Ed.), 12: 575–597, McGraw—Hill, New York, New York.

    Google Scholar 

  • Holmboe, J. (1962) “On the behavior of symmetric waves in stratified shear layers”, Geophysiske Publikasjoner, 24(2): 67–113.

    MathSciNet  Google Scholar 

  • Holton, D. and May R.M. (1993) “Models of chaos from natural selection”, in: The Nature of Chaos(T. Mullin, Ed.): 120–148, Clarendon Press, Oxford, England.

    Google Scholar 

  • Horton, R.K. (1965) “An index—number for rating water quality”, Journal Water Pollution control Federation, 37(3).

    Google Scholar 

  • Jonasson, I.R. (1977) “Geochemistry of sediment/water interactions of metals, including observations on availability”, in: Fluvial Transport of Sediment—Associated Nutrients and Contaminants (H. Shear and A.E.P. Watson, Eds.): 255–271, IJR/PLUATG, Windsor, Ontario, Canada.

    Google Scholar 

  • Jørgensen, S.E. (1976) “A model of fish growth”, Ecological Modelling, 2: 303–313.

    Article  Google Scholar 

  • Jørgensen, S.E. (1983) “Modeling the distribution and effect of toxic substances in rivers and lakes”, in: Mathematical Modeling of Water Quality: Streams, Lakes, and Reservoirs(G.T. Orlob, Ed.): 395–424, John Wiley & Sons, New York, New York.

    Google Scholar 

  • Jørgensen, S.E. (1983a) “Modeling the ecological processes”, in: Mathematical Modeling of Water Quality: Streams, Lakes, and Reservoirs(G.T. Orlob, Ed.): 116–149, John Wiley & Sons, New York, New York.

    Google Scholar 

  • Karickhoff, S.W. (1984) “Organic pollutant sorption in aquatic systems”, Journal of Hydraulic Engineering, ASCE, 110(6): 707–735.

    Article  Google Scholar 

  • Kim, H.S. (1992) “Settling of Fine Particles” MSc Thesis, Department of Ocean Engineering, Florida Atlantic University, Boca Raton, Florida.

    Google Scholar 

  • Kim, H.S. and Scarlatos, P.D. (1993) “Fractal dimension of aggregated sediments”, in: Hydraulic Engineering ’93(H.W. Shen, S.T. Su and F. Wen, Eds.), I: 1184–1188, ASCE, San Francisco, California.

    Google Scholar 

  • Kinniburgh, D.G. (1986) “General purpose adsorption isotherms”, Environmental Science and Technology, 20: 895–904.

    Article  Google Scholar 

  • Koschmieder, E.L. (1993) “Bèrnard Cells and Taylor Vortices”, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Kranenburg, C. (1994) “On gradient—transport turbulent models for stably stratified shear flow”, Reprints 2(A3): 1–8, 4th International Symposium on Stratified Flows, Grenoble, France.

    Google Scholar 

  • Krauss, W. (1966) “Methoden und Ergebnisse der Theoretischen Ozeanographie”, B.II. Interne Wellen, Gebrüder Borntraeger, Berlin, Germany.

    Google Scholar 

  • Lassiter, R.R. (1978) “Principles and Constraints for Predicting Exposure to Environmental Pollutants”, US EPA, EPA-118–127519, Corvallis, Oregon.

    Google Scholar 

  • Lawrence, G.A., Lasheras, J.C. and Browand, F.K. (1987) “Shear instabilities in stratified flow” Reprints, I(A.3): 1–13, 3rd International Symposium on Stratified Flows, Pasadena, California.

    Google Scholar 

  • Linden, P.F. (1973) “The interaction of a vortex ring with a sharp density interface: A model for turbulent entrainment”, Journal of Fluid Mechanics, 60(3): 467–480.

    Article  Google Scholar 

  • Liss, P.S. and Slater, P.G. (1974) “Flux of gases across the sea—air interface”, Nature, 247: 181–184.

    Article  Google Scholar 

  • Lorentz, E.N. (1963) “Deterministic nonperiodic flow”, Journal Atmospheric Sciences, 20: 130–141.

    Article  Google Scholar 

  • Lu, J.C.S. and Chen, K.Y. (1977) “Migration of trace metals in interface of seawater and polluted surfacial sediments”, Environmental Science and Technology, 11: 174–182.

    Article  Google Scholar 

  • Lung, W.-S. (1993) “Water Quality Modeling: Application to Estuaries”, III, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Maa, P.-Y. (1986) “Erosion of Soft Muds by Waves”, Coastal and Oceanographic Engineering Department, Report UFL/COEL—TR/059, University of Florida, Gainesville, Florida.

    Google Scholar 

  • Mackay, D. and Powers, B. (1987) “Sorption of hydrophobic chemicals from water: A hypothesis for the mechanism of the particle concentration effect”, Chemosphere, 16(4): 745–757.

    Article  Google Scholar 

  • Marsily, de, G. (1981) “Quantitative Hydrogeology —Groundwater Hydrology for Engineers”, Academic Press, New York, New York.

    Google Scholar 

  • Masters, G.M. (1991) “Introduction to Environmental Engineering and Science”, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Mathews, A.P. and Zayas, I. (1989) “Particle size and shape effects on adsorption rate parameters”, Journal of Environmental Engineering, ASCE, 115(1): 41–55.

    Article  Google Scholar 

  • McEwan, A.D. (1983) “The kinematics of stratified mixing through internal wave breaking”, Journal of Fluid Mechanics, 128: 47–57.

    Article  Google Scholar 

  • McWhorter, D.B. and Sunada, D.K. (1977) “Ground—Water Hydrology and Hydraulics”, Water Resources Publications, Fort Collins, Colorado.

    Google Scholar 

  • Medina, A.J. and McCutcheon, S.C. (1989) “Fate and transport of sediment—associated contaminants”, in: Hazard Assessment of Chemicals(J. Saxena, Ed.): 225–291, Hemisphere Publishing Corp., New York, New York.

    Google Scholar 

  • Mehta, A.J. and Srinivas, R. (1993) “Observations on the entrainment of fluid mud by shear flow”, in: Nearshore and Estuarine Cohesive Sediment Transport(A.J. Mehta, Ed.), Coastal and Estuarine Studies, 42: 224–246, American Geophysical Union.

    Chapter  Google Scholar 

  • Meyer, R.E. (1982) “Introduction to Mathematical Fluid Dynamics”, Dover Publications, New York, New York.

    MATH  Google Scholar 

  • Mill, T. and Mabey, W. (1988) “Hydrolysis of organic chemicals”, in: The Handbook of Environmental Chemistry, I(D): Reactions and Processes(O. Hutzinger, Ed.), Springer—Verlag, New York, New York.

    Google Scholar 

  • Miller, D.R. (1979) “Models for total transport”, in: Principles of Ecotoxicology Scope,(G.C. Butler, Ed.), 12:71–90, John Wiley & Sons, New York, New York.

    Google Scholar 

  • Narimousa, S., Long, R.R. and Kitaigorodskii, S.A. (1986) “Entrainment due to turbulent shear flow at the interface of a stably stratified fluid”, Tellus, 38A: 76–87.

    Google Scholar 

  • Nichols, M.M. (1986) “Effects of fine sediment resuspension in estuaries”, in: Estuarine Cohesive Sediment Dynamics(A.J. Mehta, Ed.), Lecture Notes on Coastal and Estuarine Studies, 14: 5–42, Springer—Verlag, Germany.

    Chapter  Google Scholar 

  • O’Connor, D.J. and Connolly, J.P. (1980) “The effect of concentration of adsorbing solids on the partition coefficient”, Water Research, 14: 1517–1523.

    Article  Google Scholar 

  • Okubo, A. (1970) “Oceanic Mixing”, Management Oceanic Services, Detroit, Michigan.

    Google Scholar 

  • Onishi, Y. and Wise, S.E. (1982) “Mathematical Model, SERATRA, for Sediment—Contaminant Transport in Rivers and Its Applications to Pesticide Transport in Four Mile and Wolf Creeks in Iowa”, Environmental Research Laboratory, US EPA, EPA-600/3–82–045, Athens, Georgia.

    Google Scholar 

  • Orlob, G.T. (1983) “One—dimensional models for simulation of water quality models in lakes and reservoirs”, in: Mathematical Modeling of Water Quality: Streams, Lakes, and Reservoirs(G.T. Orlob, Ed.): 227–273, John Wiley & Sons, New York, New York.

    Google Scholar 

  • Ottino, J.M. (1989) “The Kinematics of Mixing: Stretching, Chaos and Transport”, Cambridge University Press, Cambridge, England.

    MATH  Google Scholar 

  • Pederson, F.B. (1980) “A Monograph on Turbulent Entrainment and Friction in Two-Layer Stratified Flow”, Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, Lyngby, Denmark.

    Google Scholar 

  • Pederson, F.B. (1986) “Environmental Hydraulics: Stratified Flows”, Springer-Verlag, Berlin, Germany.

    Book  Google Scholar 

  • Phillips, O.M. (1977) “The Dynamics of the Upper Ocean” 2nd Edition, Cambridge University Press, Cambridge, England.

    MATH  Google Scholar 

  • Pond, S. and Pickard, G.L. (1986) “Introductory Dynamical Oceanography”, 2nd Edition, Pergamon Press, Oxford, U.K.

    Google Scholar 

  • Power, E.A. and Chapman, P.M. (1992) “Assessing sediment quality”, in: Sediment Toxicity Assessment(G.A. Burton, Jr., Ed.): 1–18, Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  • Ray, B.T. (1995) “Environmental Engineering”, PWS Publishing Company, New York, New York.

    Google Scholar 

  • Reed, S.C., Middlebrooks, E.J. and Crites, R.W. (1988) “Natural Systems for Waste Management and Treatment”, McGraw-Hill, New York, New York.

    Google Scholar 

  • Roberts, J. (1975) “Internal Gravity Waves in the Ocean”, Marcel Dekker, New York, New York.

    Google Scholar 

  • Rosenberg, N.D. and Spera, F.J. (1992) “Convection in porous media with thermal and chemical buoyancy: A comparison of two models for solute dispersion”, in: Chaotic Processes in the Geological Sciences(D.A. Yuen, Ed.): 225–235, Springer-Verlag, Berlin, Germany.

    Chapter  Google Scholar 

  • Rosso, M., Sapoval, B., Gouyet, J.-F. and Colonna, J.-D. (1991) “Creation of fractal objects by diffusion”, in: Fractals — Non-Integral Dimensions and Applications(G. Cherbit, Ed.): 203–211, John Wiley & Sons, New York, New York.

    Google Scholar 

  • Saffman, P.G. (1992) “Vortex Dynamics”, Cambridge University Press, Cambridge, England.

    MATH  Google Scholar 

  • Scarlatos, P.D. (1994) “St. Johns River, Florida, Water Quality Feasibility Study, Phase IInterim Report, V. A Review of Sediment-Analysis, Management Techniques, and Sediment Quality Data for the Lower St. Johns River Basin” Special Publication SJ94-SP 16, Jacksonville District Office, US Army Corps or Engineers, Jacksonville, Florida.

    Google Scholar 

  • Scarlatos, P.D. (1996) “Estuarine Hydrodynamics” in: Environmental Hydraulics(V.P. Singh and W.H. Hager, Eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands (This volume).

    Google Scholar 

  • Scarlatos, P.D. and Kamel, M.H. (1994) “Microstructure simulation of suspended sediments” Reprints, 2(GP2): 1–8, 4th International Symposium on Stratified Flows, Grenoble, France.

    Google Scholar 

  • Scarlatos, P.D. and Mehta, A.J. (1993) “Instability and entrainment mechanisms at the Stratified fluid mudwater interface”, in: Nearshore and Estuarine Cohesive Sediment Transport (A.J. Mehta, Ed.) Coastal and Estuarine Studies, 42: 205–223, American Geophysical Union.

    Google Scholar 

  • Scarlatos, P.D. and Zhang, Y. (1981) “Fluid mud problems in lakes, reservoirs and detention ponds”, in: Hydraulic Engineering(R.M. Shane, Ed.): 1127–1132, ASCE, Nashville, Tennessee.

    Google Scholar 

  • Schijf, J.B. and Schönfeld, J.B. (1953) “Theoretical considerations on the motion of salt and fresh water”, Proceedings Minnesota International Hydraulics Convention, IAHR: 321–333.

    Google Scholar 

  • Scorer, R.S. (1978) “Environmental Aerodynamics” Ellis Horwood Publisher, Chichester, U.K.

    MATH  Google Scholar 

  • Simons, D.B. and Sentürk, F. (1992) “Sediment Transport Technology — Water and Sediment Dynamics” Revised Edition, Water resources Publications, Fort Collins, Colorado.

    Google Scholar 

  • Singh, V.P. (1992) “Elementary Hydrology”, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Sparrow, C. (1982) “The Lorentz Equations: Bifurcations, Chaos and Strange Attractors”, Springer-Verlag, Berlin, Germany.

    Book  Google Scholar 

  • Speece, R.E. (1980) “Water and wastewater”, in: Environmental Health(P.W. Purdom, Ed.): 157–221, Academic Press, New York, New York.

    Google Scholar 

  • Stumm, W. (1992) “Chemistry of the Solid—Water Interface: Processes at the Mineral—Water and particle—Water Interface in Natural Systems”, John Wiley & Sons, New York, New York.

    Google Scholar 

  • Takayasu, H. (1990) “Fractals in the Physical Sciences”, Manchester University Press, Manchester, England.

    MATH  Google Scholar 

  • Tatsumi, T. (Ed.) (1984) “Turbulence and Chaotic Phenomena in Fluids”, IUTAM, North — Holland, Amsterdam, The Netherlands.

    MATH  Google Scholar 

  • Thomann, V.T. and Mueller, J.A. (1987) “Principles of Surface Water Quality Modeling and Control”, Harper Collins Publishers, New York, New York.

    Google Scholar 

  • Tisdale, T.S. and Scarlatos, P.D. (1989) “Low—land hydraulics and hydrodynamics”, in: Hydraulic Engineering(M.A. Ports, Ed.): 789–794, ASCE, New Orleans, Louisiana.

    Google Scholar 

  • Turcotte, D.L. (1992) “Fractals and Chaos in Geology and Geophysics”, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Turner, J.S. (1973) “Buoyancy Effects in Fluids”, Cambridge University Press, Cambridge, England.

    Book  MATH  Google Scholar 

  • Vallis, G.K. (1986) “El Niño: A chaotic dynamical system?”, Science, 232: 243–245.

    Article  Google Scholar 

  • Vanoni, V.A. (Ed.) (1975) “Sedimentation Engineering”, ASCE — Manuals and Reports on Engineering Practice, 54, New York, New York.

    Google Scholar 

  • Verhulst, F. (1990) “Nonlinear Differential Equations and Dynamical Systems”, Springer-Verlag, Berlin, Germany.

    Book  MATH  Google Scholar 

  • Washington, H.G. (1984) “Diversity, biotic and similarity indices, A review with special relevance to aquatic ecosystems”, Water Research, 18(6): 653–694.

    Article  Google Scholar 

  • Watanabe, W., Harleman, D.F.R. and Vasiliev, O.F. (1983) “Two— and three—dimensional mathematical models for lakes and reservoirs”, in: Mathematical Modeling of Water Quality: Streams, Lakes, and Reservoirs(G.T. Orlob, Ed.): 274–336, John Wiley & Sons, New York, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Scarlatos, P.D. (1996). Ecohydrodynamics. In: Singh, V.P., Hager, W.H. (eds) Environmental Hydraulics. Water Science and Technology Library, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8664-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8664-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4686-4

  • Online ISBN: 978-94-015-8664-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics