Skip to main content

Initiation and Growth of Cracks Under Thermal Fatigue Loading for a 316 L Type Steel

  • Chapter

Abstract

In order to assess the behaviour of components submitted to very severe temperature fluctuations, the conditions corresponding to initiation and propagation of cracks under thermal loading must be known. These conditions were determined for the 316 L steel, which is a material widely used in the nuclear industry. In the fast breeder reactors, the mixing of sodium flows at different temperatures (thermal striping) can lead to the development of a crack network on some components [1, 2]. In fusion reactors, the first wall of the tokamak vacuum vessel will suffer from thermal shock even in normal operating conditions due to a periodic ignition of the plasma about every 100 seconds. However, thermal fatigue will also result from successive disruptions of the plasma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pradel, P., The main objectives of thermal striping studies in progress for French LMFBR Thermal hydraulic and design aspects, Pressure Vessel Piping Conference, 98 – 8, (1985) 143–146.

    Google Scholar 

  2. Lemoine, P., Marini, B.,Meny, L. Etude de la fatigue thermique superficielle d’un acier inoxydable austénitique, Journée internationale de printemps, Fatigue à haute température, (1986), 331–344.

    Google Scholar 

  3. Code RCC-MR — Filière Rapide — Tome 1 — Volume B — Recueil des règles applicables pour les matériaux de Niveau 1, (1985). 89 – 95, AFCEN.

    Google Scholar 

  4. Haigh, J.R., Skelton, R.P., A strain Intensity Approach To High Temperature Fatigue Crack Growth and Failure, Materials science and Engineering (1978) 36,133–137.

    Article  CAS  Google Scholar 

  5. Fissolo, A, Marini, B.,Wident, P., Nais, G., Biaxial thermal fatigue on 316L, Proceedings of the Fourth International Conference on Biaxial/ Multiaxial Fatigue, Société Française de métallurgie et de matériaux and European Structural Integrity Society, St Germain en Laye, 1994, 513–526.

    Google Scholar 

  6. Marsh, D.J., A Thermal Shock Fatigue Study of Type 304 and 316 Stainless Steel. Fatigue and Engineering Materials and Structures 4–2 (1981), 179–195.

    Article  CAS  Google Scholar 

  7. Code RCC — MR — Tome I — Volume Z : Annexe Technique A3 – 1S, AFCEN, Edition of June 1985.

    Google Scholar 

  8. Levaillant, C, Thèse d’état de l’Université de Technologie de Compiègne, (1984).

    Google Scholar 

  9. Wood, D.S., Proposals for design against thermal striping, Nuclear Energy, 19 – 6, (1980) pp. 433–437.

    CAS  Google Scholar 

  10. Skelton R.P., Crack Initiation and Growth in Simple Metal Components During Thermal Cycling, in R.P. Skelton (ed.), Fatigue at High Temperature, Applied Science Publishers London and New York LTD, (1983), pp. 1–61.

    Google Scholar 

  11. Burlet H., Vasseur S., Cailletaud G., Pineau A., Fatigue Crack Growth under Thermomechanical Loading, Application to life prediction of centrifugal casting equipment, International Seminar on High Temperature Fracture Mechanisms and Mechanics, (1987).

    Google Scholar 

  12. Burlet, H., Vasseur, S., Besson, X, Pineau, A., Fatigue of Engineering Materials Stucture, 12–2, (1989), pp. 123–133.

    Article  Google Scholar 

  13. Green, D., Munz, D., Thermal fatigue crack growth on austenitic steels plates, Private communication June 1991.

    Google Scholar 

  14. Dowling, N.E., Crack growth during low cycle fatigue of smooth axial specimens. Cyclic StressStrain and Plastic Deformation Aspects of Fatigue Crack Growth, ASTM STP 637, American Society for Testing and Materials, (1977) pp. 97–121.

    Google Scholar 

  15. Buchalet, C.B., Bamford, W.H., Stress Intensity Factor Solutions for Continuous Surface Flaws in Reactor Pressure Vessels, Mechanics of Crack Growth, ASTM STP 590, American Society for Testing and Materials, (1976), pp. 385–402.

    Google Scholar 

  16. Tavassoli, A.A., Assessment of austenitic stainless steels, Fusion Engineering and Design 29 (1995), 371–390.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fissolo, A., Marini, B., Berrada, A., Nais, G., Wident, P. (1996). Initiation and Growth of Cracks Under Thermal Fatigue Loading for a 316 L Type Steel. In: Bressers, J., Rémy, L., Steen, M., Vallés, J.L. (eds) Fatigue under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modelling. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8636-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8636-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4688-8

  • Online ISBN: 978-94-015-8636-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics